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Preface

The last decade has seen a substantial rejuvenation of interest in the

study of quantum phase transitions, driven by experiments on the cuprate

superconductors, the heavy fermion materials, organic conductors and

related compounds. Although quantum phase transitions in simple spin

systems, like the Ising model in a transverse �eld, were studied in the

early 70's, much of the subsequent theoretical work examined a partic-

ular example: the metal-insulator transition. While this is a subject of

considerable experimental importance, the greatest theoretical progress

was made for the case of the Anderson transition of non-interacting elec-

trons, which is driven by the localization of the electronic states in the

presence of a random potential. The critical properties of this transition

of non-interacting electrons constituted the primary basis upon which

most condensed matter physicists have formed their intuition on the be-

havior of the systems near a quantum phase transition. On the other

hand, it is clear that strong electronic interactions play a crucial in the

systems of current interest noted earlier, and simple paradigms for the

behavior of such systems near quantum critical points are not widely

known.

It is the purpose of this book to move interactions to center stage by

describing and classifying the physical properties of the simplest inter-

acting systems undergoing a quantum phase transition. The e�ects of

disorder will be neglected for the most part, but will be considered in

the concluding chapters. Our focus will be on the dynamical properties

of such systems at non-zero temperature, and it shall become apparent

that these di�er substantially from the non-interacting case. We shall

also be considering inelastic collision-dominated quantum dynamics and

transport: this will apply to clean physical systems whose inelastic scat-

tering time is much shorter than their disorder-induced elastic scattering

xi



xii Preface

time. This is the converse of the usual theoretical situation in Anderson

localization or mesoscopic system theory, where inelastic collision times

are conventionally taken to be much larger than all other time scales.

One of the most interesting and signi�cant regimes of the systems we

shall study is one in which the inelastic scattering and phase coherence

times are of order �h=k

B

T , where T is the absolute temperature. The

importance of such a regime was pointed out by Varma et al. [510, 511]

by an analysis of transport and optical data on the cuprate supercon-

ductors. Neutron scattering measurements of Hayden et al. [220] and

Keimer et al. [267] also supported such an interpretation in the low dop-

ing region. It was subsequently realized [440, 97, 424] that the inelastic

rates are in fact a universal number times k

B

T=�h, and are a robust prop-

erty of the high temperature limit of renormalizable, interacting quan-

tum �eld theories which are not asymptotically free at high energies. In

the Wilsonian picture, such a �eld theory is de�ned by renormalization

group 
ows away from a critical point describing a second order quantum

phase transition. It is not essential for this critical point to be in an ex-

perimentally accessible regime of the phase diagram: the quantum �eld

theory it de�nes may still be an appropriate description of the physics

over a substantial intermediate energy and temperature scale. Among

the implications of such an interpretation of the experiments was the

requirement that response functions should have prefactors of anoma-

lous powers of T and a singular dependence on the wavevector; recent

observations of Aeppli et al [2], at somewhat higher dopings, appear to

be consistent with this. These recent experiments also suggest that the

appropriate quantum critical point may be one involving competition

between an insulating state in which the holes have crystallized into a

striped arrangement, and a d-wave superconductor. There is no theory

yet for such quantum transitions, but we shall discuss numerous simpler

models here which capture some of the basic features.

It is also appropriate to note here theoretical studies [341, 23, 504,

103, 104] on the relevance of �nite temperature crossovers near quantum

critical points of Fermi liquids [225] to the physics of the heavy fermion

compounds.

A separate motivation for the study of quantum phase transitions is

simply the value in having another perspective on the physics of an in-

teracting many body system. A traditional analysis of such a system

would begin from either a weak coupling Hamiltonian, and then build in

interactions among the nearly free excitations, or from a strong-coupling

limit, where the local interactions are well accounted for, but their coher-
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ent propagation through the system is not fully described. In contrast,

a quantum critical point begins from an intermediate coupling regime

which straddles these limiting cases. One can then use the powerful

technology of scaling, relevant and irrelevant operators, to set up a sys-

tematic expansion of physical properties away from the special critical

point. For many low-dimensional strongly correlated systems, I believe

that such an approach holds the most promise for a comprehensive un-

derstanding. Many of the vexing open problems are related to phenom-

ena at intermediate temperatures, and this is precisely the region over

which the in
uence of a quantum critical point is dominant. One of these

open problems is the appearance of the so-called pseudo-gap in the high

temperature superconductors, and, as we shall see in Chapters 7 and 8,

pseudo-gap like features indeed appear over a wide temperature range

in systems near quantum critical points. Related ideas also appear in

recent discussions by Laughlin [293].

The particular quantum phase transitions that are examined in this

book are undoubtedly heavily in
uenced by my own research. However,

I do believe that my choices can also be justi�ed on pedagogical grounds,

and lead to a logical development of the main physical concepts in the

simplest possible contexts. Throughout, I have also attempted to pro-

vide experimental motivations for the models considered: this is mainly

in the form of a guide to the literature, rather than in-depth discussion

of the experimental issues. A more experimentally oriented introduction

to the subject of quantum phase transitions can be found in the excellent

review article of Sondhi, Girvin, Carini and Shahar [469]. Readers may

also be interested in a recent introductory article [520], intended for a

general science audience.

Many important topics have been omitted from this book due to the

limitations of space, time and my expertise. The reader may �nd discus-

sion on the metal insulator transition of electronic systems in the pres-

ence of disorder and interactions in a number of reviews [299, 73, 149, 47,

237]. The fermionic Hubbard model, and its metal insulator transition

is discussed in most useful treatises by Georges, Kotliar, Krauth and

Rozenberg [177] and Gebhard [172]. I have also omitted discussions of

quantum phase transitions in quantum Hall systems: these are reviewed

by Sondhi et al. [469] by Huckenstein [230], and also in the collections

edited by Prange and Girvin [393] and Das Sarma and Pinczuk [119]

(however, some magnetic transitions in quantum Hall systems [377, 378]

will be brie
y noted). Quantum impurity problems are also not dis-

cussed, although these have been the focus of much recent theoretical
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and experimental interest; useful discussions of signi�cant developments

may be found in Refs [368, 302, 525, 12, 144, 262, 303, 516, 106, 107,

374, 376].

Some recent books and review articles o�er the reader a complemen-

tary perspective on the topics covered: I note the works of Fradkin [162],

Auerbach [30], Continentino [103] ,Tsvelik [503] and Chakrabarti, Dutta

and Sen [82], and I will occasionally make contact with some of them.

How to use this book

I wrote most of this book at a level which should be accessible to gradu-

ate students who have completed the standard core curriculum of courses

required for a master's degree. In principle, I also do not assume a de-

tailed knowledge of the renormalization group and its application to the

theory of second-order phase transitions in classical systems at nonzero

temperature. I provide a synopsis of the needed background in the con-

text of quantum systems, but my treatment is surely too concise to be

comprehensible to students who have not had a prior exposure to this

well-known technology. I decided it would be counterproductive for me

to enter into an in-depth discussion of topics for which numerous excel-

lent texts are already available. In particular, the texts by Ma [318],

Itzykson and Drou�e [247] and Goldenfeld [184], and the review article

by Br�ezin et al. [63] can serve as useful companions to this book.

An upper level graduate course on quantum statistical mechanics can

be taught on selected topics from this book, as I have done at Yale. I

suggest that such a course begin by covering all of Part 1 (excluding

Section 3.2), followed by Chapters 4, 5, and 8 from Part 2. The mate-

rial in Chapter 8 should be supplemented by some of the readings on

the renormalization group mentioned above. Depending upon student

interest and time, I would then pick from Chapters 10{12 (as a group),

Chapter 13 (until Section 13.3.1), and Chapter 14 from Part 3. A more

elementary course should skip Chapters 8 and 10{12. The chapters not

mentioned in this paragraph are at a more advanced level, and can serve

as starting points for student presentations.

Readers who are newcomers to the subject of quantum phase tran-

sitions should read the chapters selected above �rst. More advanced

readers should go through all the chapters in the order they appear.

Subir Sachdev
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1

Basic concepts

1.1 What is a quantum phase transition ?

Consider a Hamiltonian, H(g), whose degrees of freedom reside on the

sites of a lattice, and which varies as a function of a dimensionless cou-

pling g. Let us follow the evolution of the ground state energy of H(g)

as a function of g. For the case of a �nite lattice, this ground state

energy will generically be a smooth, analytic function of g. The main

possibility of an exception comes from the case when g couples only to a

conserved quantity (i.e., H(g) = H

0

+gH

1

where H

0

and H

1

commute).

This means that H

0

and H

1

can be simultaneously diagonalized and so

the eigenfunctions are independent of g even though the eigenvalues vary

with g: then there can be a level crossing where an excited level becomes

the ground state at g = g

c

(say), creating a point of non-analyticity of

the ground state energy as a function of g (see Fig 1.1). The possibilities

for an in�nite lattice are richer. An avoided level-crossing between the

ground and an excited state in a �nite lattice could become progres-

sively sharper as the lattice size increases, leading to a non-analyticity

at g = g

c

in the in�nite lattice limit. We shall identify any point of

non-analyticity in the ground state energy of the in�nite lattice system

as a quantum phase transition: the non-analyticity could be either the

limiting case of an avoided level crossing, or an actual level crossing.

The �rst kind is more common, but we shall also discuss transitions of

the second kind in Chapters 11 and 13. The phase transition is usually

accompanied by a qualitative change in the nature of the correlations in

the ground state, and describing this change shall clearly be one of our

major interests.

Actually our focus shall be on a limited class of quantum phase tran-

sitions which are second order. Loosely speaking, these are transitions

3
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g

E

(a)

(b)

E

g

Fig. 1.1. Low eigenvalues, E, of a Hamiltonian H(g) on a �nite lattice, as

a function of some dimensionless coupling g. For the case where H(g) =

H

0

+ gH

1

, where H

0

and H

1

commute and are independent of g, there can

be an actual level-crossing, as in (a). More generally, however, there is an

\avoided level-crossing", as in (b).

at which the characteristic energy scale of 
uctuations above the ground

state vanishes as g approaches g

c

. Let the energy � represent a scale

characterizing some signi�cant spectral density of 
uctuations at zero

temperature (T ) for g 6= g

c

. Thus � could be the energy of the lowest

excitation above the ground state, if this is non-zero (i.e., there is an

energy gap �), or if there are excitations at arbitrarily low energies in

the in�nite lattice limit (i.e., the energy spectrum is gapless), � is the

scale at which there is a qualitative change in the nature of the frequency

spectrum from its lowest frequency to its higher frequency behavior. In

most cases, we will �nd that as g approaches g

c

, � vanishes as

� � J jg � g

c

j

z�

(1.1)

(exceptions to this behavior appear in Section 14.2.6). Here J is the

energy scale of a characteristic microscopic coupling, and z� is a critical
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exponent. The value of z� is usually universal, i.e., it is independent

of most of the microscopic details of the Hamiltonian H(g): we shall

have much more to say about the concept of universality below, and

in the following chapters. The behavior (1.1) holds both for g > g

c

and g < g

c

with the same value of the exponent z�, but with di�erent

non-universal constants of proportionality. We shall sometimes use the

symbol �

+

(�

�

) to represent the characteristic energy scale for g > g

c

(g < g

c

).

In addition to a vanishing energy scale, second order quantum phase

transitions invariably have a diverging characteristic length scale �: this

could be the length scale determining the exponential decay of equal time

correlations in the ground state, or the length scale at which some char-

acteristic crossover occurs to the correlations at the longest distances.

This length diverges as

�

�1

� �jg � g

c

j

�

; (1.2)

where � is a critical exponent, and � is an inverse length scale (a `mo-

mentum cuto�') of order the inverse lattice spacing. The ratio of the

exponents in (1.1) and (1.2) is z, the dynamic critical exponent: the

characteristic energy scale vanishes as the z'th power of the character-

istic inverse length scale

� � �

�z

: (1.3)

It is important to notice that the discussion above refers to singular-

ities in the ground state of the system. So strictly speaking, quantum

phase transitions occur only at zero temperature, T = 0. All exper-

iments are necessarily at some non-zero, though possibly very small,

temperature, and so a central task of the theory of quantum phase tran-

sitions is to describe the consequences of this T = 0 singularity on phys-

ical properties at T > 0. It turns out that working outward from the

quantum critical point at g = g

c

, and T = 0 is a powerful way of un-

derstanding and describing the thermodynamic and dynamic properties

of numerous systems over a broad range of values of jg � g

c

j and T .

Indeed, it is not even necessary that the system of interest ever have its

microscopic couplings reach a value such that g = g

c

: it can still be very

useful to argue that there is a quantum critical point at a physically in-

accessible coupling g = g

c

, and to develop a description in the deviation

jg � g

c

j. It is one of the purposes of this book to describe the physical

perspective that such an approach o�ers, and to contrast it from more
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g

T

0

T

0

gc

gc g

(a)

(b)

Fig. 1.2. Two possible phase diagrams of system near a quantum phase tran-

sition. In both cases there is a quantum critical point at g = g

c

and T = 0. In

(b), there is a line of T > 0 second order phase transitions terminating at the

quantum critical point. The theory of phase transitions in classical systems

driven by thermal 
uctuations can be applied with the shaded region of (b).

conventional expansions about very weak (say g ! 0) or very strong

couplings (say g !1).

1.2 Quantum versus classical phase transitions

There are two important possibilities for the T > 0 phase diagram of a

system near a quantum critical point: these are shown in Fig 1.2, and

we will meet examples of both kinds in this book. In the �rst, shown in

Fig 1.2a, the thermodynamic singularity is present only at T = 0, and

all T > 0 properties are analytic as a function of g near g = g

c

. In the

second, shown in Fig 1.2b, there is line of T > 0 second order phase

transitions (this is a line at which the thermodynamic free energy is not

analytic) which terminates at the T = 0 quantum critical point at g = g

c

.
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In the vicinity of such a line, we will �nd that the typical frequency at

which the important long distance degrees of freedom 
uctuate, !

typ

,

satis�es

�h!

typ

� k

B

T: (1.4)

Under these conditions, it will be seen that a purely classical descrip-

tion can be applied to these important degrees of freedom|this classical

description works in the shaded region of Fig 1.2b. Consequently, the

ultimate critical singularity along the line of T > 0 phase transitions

in Fig 1.2b is described by the theory of second order phase transi-

tions in classical systems. This theory was developed thoroughly in

last three decades and has been explained in many popular reviews and

books [318, 63, 247, 184, 550]|we shall assume here that the reader has

some familiarity with at least the basic concepts of this classical theory,

and will occasionally refer to some of these sources for speci�c details.

Notice that the shaded region of classical behavior in Fig 1.2b is within

the wider window of the phase diagram, with moderate values of jg�g

c

j

and T , which we asserted above should be described as an expansion

about the quantum critical point at g = g

c

and T = 0. So our study

of quantum phase transitions will also apply to the shaded region of

Fig 1.2b, where it will yield information which is complementary to that

available by directly thinking of the T > 0 phase transition in terms of

purely classical models.

We note that phase transitions in classical models are driven only by

thermal 
uctuations, as classical systems usually freeze into a 
uctu-

ationless ground state at T = 0. In contrast, quantum systems have


uctuations driven by the Heisenberg uncertainty principle even in the

ground state, and these can drive interesting phase transitions at T = 0.

The T > 0 region in the vicinity of a quantum critical point therefore

o�ers a fascinating interplay of e�ects driven by quantum and thermal


uctuations; sometimes, as in the shaded region of Fig 1.2b, we can

�nd some dominant, e�ective degrees of freedom whose 
uctuations are

purely classical and thermal, and then the classical theory will apply.

However, as already noted, our attention will not be limited to such

regions, and we shall be interested in a broader section of the phase

diagram.
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1.3 Experimental examples

To make the concepts of the previous sections less abstract, let us men-

tion some recent experimental studies of second order quantum phase

transitions. All of the following examples will also be discussed further

in this book.

� The low-lying magnetic excitations of the insulator LiHoF

4

consist of


uctuations of the Ho ions between two spin states which are aligned

parallel and anti-parallel to a particular crystalline axis. These states

can be represented by a two-state `Ising' spin variable on each Ho ion.

At T = 0, the magnetic dipolar interactions between the Ho ions cause

all the Ising spins to align in the same orientation, so the ground state

is a ferromagnet. Bitko et al. [55] placed this material in a magnetic

�eld transverse to the magnetic axis. Such a �eld induces quantum

tunneling between the two states of each Ho ion, and a su�ciently

strong tunneling rate can eventually destroy the long-range magnetic

order. Such a quantum phase transition was indeed observed [55],

with the ferromagnetic moment vanishing continuously at a quantum

critical point. Note that such a transition can, in principle, occur pre-

cisely at T = 0, when it is driven entirely by quantum 
uctuations.

We shall call the T = 0 state without magnetic order a quantum para-

magnet . On the other hand, we can also destroy the magnetic order

at a �xed transverse magnetic �eld (possibly zero), simply by raising

the temperature, and undergoing a conventional Curie transition to

a high temperature magnetically disordered state. Among the objec-

tives of this book is to provide a description of the intricate crossover

between the zero temperature quantum transition and the �nite tem-

perature transition driven partially by thermal 
uctuations; we shall

also delineate the important di�erences between the T = 0 quan-

tum paramagnet and the high temperature `thermal paramagnet'; see

Chapters 5, 7 and 8.

� The heavy fermion material CeCu

6�x

Au

x

[415, 479, 517, 447] has a

magnetically ordered ground state, with the magnetic moments on

the Ce ions arranged in a spin density wave with an incommensurate

period (this simply means that the expectation value of the spin op-

erator oscillates in a wave-like manner with a period which is not a

rational number times a period of the crystalline lattice). This order

is present at larger values of the doping x. By decreasing the value

of x, or by placing the crystal under pressure, it is possible to destroy

the magnetic order in a second order quantum phase transition. The
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ground state then becomes a Fermi liquid with a rather large e�ective

mass for the fermionic quasiparticles. This transition will be discussed

in Chapter 12

� The two-dimensional electron gas in semiconductor heterostructures

has a very rich phase diagram with a large number of quantum phase

transitions. Let us describe a particular class of transitions which will

be relevance to the theoretical development in this book. As is well

known, the energy spectrum of electrons moving in two dimensions

in the presence of a perpendicular magnetic �eld splits into discrete,

equally spaced energy levels (Landau levels), with each level having

the same �xed macroscopic degeneracy. Consider a two-dimensional

electron gas in a magnetic �eld at density such that the lowest Lan-

dau level is precisely �lled (�lling factor � = 1). The electronic spins

are then fully polarized in the direction of the �eld, and the ground

state is a fully polarized ferromagnet. Actually, this ferromagnetic

order is induced more by the ferromagnetic exchange interactions be-

tween the electrons than by the Zeeman coupling to the external �eld.

Now imagine bringing two such ferromagnetic layers close to each

other [385, 377, 445, 378, 310]. For large layer spacing, the two layers

will have their ferromagnetic moments both aligned in the direction

of the applied �eld. For smaller spacings, there turns out to be a sub-

stantial antiferromagnetic exchange between the two layers, so that

ground state eventually becomes a spin singlet, created by a `bonding'

of electrons in opposite layers into spin singlet pairs [546, 120, 121].

The transition from a fully polarized ferromagnet to a spin singlet

state actually happens through two second order quantum phase tran-

sitions via an intermediate state with `canted' antiferromagnetic order:

this shall be discussed in Section 13.4.

� The low energy spin 
uctuations of the insulator La

2

CuO

4

consist of

quantum 
uctuations in the orientations of S = 1=2 spins located on

the sites of a square lattice. Each spin represents the magnetic states

of the d-orbitals on a Cu ion. There is an antiferromagnetic exchange

coupling between the spins which prefers an anti-parallel orientation

for neighboring spins, and the resulting Hamiltonian is the square lat-

tice S = 1=2 Heisenberg antiferromagnet (the modi�er `Heisenberg'

indicates that the model has the full SU(2) symmetry of rotations in

spin space). The ground state of this model is a \N�eel" state, in which

the spins are polarized in opposite orientations on the two checker-

board sublattices of the square lattice. However, theoretically, we can

consider a more general model with both �rst and second neighbor
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antiferromagnetic exchange. As we shall discuss in Chapter 13, such

a model can undergo a quantum phase transition in which the N�eel

order is destroyed, and the ground state becomes a quantum param-

agnet with a gap to all spin excitations. While such a phase transition

has not been observed experimentally so far, it still pays to consider

the physics of this quantum critical point, and to understand the �nite

temperature crossovers in its vicinity. These crossovers also in
uence

the behavior of the nearest neighbor model found in La

2

CuO

4

, and

turn out to be a useful way of interpreting its magnetic properties at

intermediate temperatures; see Chapters 5, 7 and 13.

1.4 Theoretical models

The physics underlying the quantum transitions discussed above is quite

complex, and in many cases, not completely understood. Our strategy

in this book will be to thoroughly analyze the physical properties of

quantum phase transitions in two simple theoretical model systems in

Part 2 | the quantum Ising and rotor models; fortunately, these simple

models also have some direct experimental applications and these will

be noted at numerous points in Part 2. Part 3 will then survey some

important basic quantum phase transitions in other models of physical

interest. Our motivation in dividing the discussion in this manner is

mainly pedagogical: the quantum transitions of the Ising/rotor models

have an essential simplicity, but their behavior is rich enough to display

most of the basic phenomena we wish to explore. It will therefore pay

to �rst meet the central physical ideas in this simple context.

We will introduce the quantum Ising and rotor models in turn, and

discuss the nature of the quantum phase transitions in them.

1.4.1 Quantum Ising model

We begin by writing down the Hamiltonian of the quantum Ising model.

It is

H

I

= �Jg

X

i

�̂

x

i

� J

X

hiji

�̂

z

i

�̂

z

j

(1.5)

As in the general notation introduced above, J > 0 is an exchange

constant which sets the microscopic energy scale, and g > 0 is a di-

mensionless coupling which will be used to tune H

I

across a quantum

phase transition. The quantum degrees of freedom are represented by
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operators �̂

z;x

i

which reside on the sites, i, of a hypercubic lattice in d

dimensions; the sum hiji is over pairs of nearest neighbor sites i, j. The

�̂

x;z

i

are the familiar Pauli matrices; the matrices on di�erent sites i act

on di�erent spin states, and so matrices with i 6= j commute with each

other. In the basis where the �̂

z

i

are diagonal, these matrices have the

well-known form

�̂

z

=

�

1 0

0 �1

�

; �̂

y

=

�

0 �i

i 0

�

; �̂

x

=

�

0 1

1 0

�

(1.6)

on each site i. We will denote the eigenvalues of �̂

z

i

simply by �

z

i

, and

so �

z

i

takes the values �1. We identify the two states with eigenvalues

�

z

i

= +1;�1 as the two possible orientations of an `Ising spin' which

can oriented up or down in j "i

i

; j #i

i

. Consequently at g = 0, when H

I

involves only the �̂

z

i

, H

I

will be diagonal in the basis of eigenvalues of

�̂

z

i

, and it reduces simply to the familiar classical Ising model. However,

the �̂

x

i

are o�-diagonal in the basis of these states, and therefore induce

quantum-mechanical tunneling events which 
ip the orientation of the

Ising spin on a site. The physical signi�cance of the two terms in H

I

should be clear in the context of our earlier discussion in Section 1.3

for LiHoF

4

. The term proportional to J is the magnetic interaction be-

tween the spins which prefers their global ferromagnetic alignment; the

actual interaction in LiHoF

4

has a long-range dipolar nature, but we

have simpli�ed this here to a nearest neighbor interaction. The term

proportional to Jg is the external transverse magnetic �eld, which dis-

rupts the magnetic order.

Let us make these qualitative considerations somewhat more precise.

The ground state of H

I

can depend only upon the value of the dimen-

sionless coupling g, and so it pays to consider the two opposing limits

g � 1 and g � 1.

First consider g � 1. In this case the �rst term in (1.5) dominates

and, to leading order in 1=g, the ground state is simply

j0i =

Y

i

j !i

i

(1.7)

where

j !i

i

= (j "i

i

+ j #i

i

)=

p

2

j  i

i

= (j "i

i

� j #i

i

)=

p

2 (1.8)

are the two eigenstates of �̂

x

i

with eigenvalues �1. The values of �

z

i

on di�erent sites are totally uncorrelated in the state (1.7), and so
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h0j�̂

z

i

�̂

z

j

j0i = �

ij

. Perturbative corrections in 1=g will build in corre-

lations in �

z

which increase in range at each order in 1=g; for g large

enough these correlations are expected to remain short-ranged, and we

expect in general that

h0j�̂

z

i

�̂

z

j

j0i � e

�jx

i

�x

j

j=�

(1.9)

for large jx

i

� x

j

j, where x

i

is the spatial co-ordinate of site i, j0i is the

exact ground state for large g, and � is the `correlation length' introduced

earlier above (1.2).

Next we consider the opposing limit g � 1. We will �nd that the

nature of the ground state is qualitatively di�erent from the large g limit

above, and shall use this to argue that there must be a quantum phase

transition between the two limiting cases at a critical g = g

c

of order

unity. For g � 1, the second term in (1.5) coupling neighboring sites

dominates; at g = 0 the spins are either all up or down (in eigenstates

of �

z

):

j"i =

Y

i

j "i

i

j#i =

Y

i

j#i

i

(1.10)

Turning on a small g will mix in a small fraction of spins of the opposite

orientation, but in an in�nite system the degeneracy will survive at any

�nite order in a perturbation theory in g: this is because there is an exact

global Z

2

symmetry transformation (generated by the unitary operator

Q

i

�

x

i

), which maps the two ground states into each other, under which

H

I

remains invariant:

�̂

z

i

! ��̂

z

i

�̂

x

i

! �̂

x

i

; (1.11)

and there is no tunneling matrix element between the majority up and

down spin sectors of the in�nite system at any �nite order in g. The

mathematically alert reader will note that establishing the degeneracy to

all orders in g, is not the same thing as establishing its existence for any

small non-zero g, but more sophisticated considerations show that this is

indeed the case. A thermodynamic system will always choose one or the

other of the states as its ground states (which may be preferred by some

in�nitesimal external perturbation), and this is commonly referred to as

a `spontaneous breaking' of the Z

2

symmetry. As in the large g limit,

we can characterize the ground states by the behavior of correlations of

�̂

z

i

; the nature of the states (1.10) and the small g perturbation theory

suggest that

lim

jx

i

�x

j

j!1

h0j�̂

z

i

�̂

z

j

j0i = N

2

0

; (1.12)
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where j0i is either of the ground states obtained from j "i or j #i by

perturbation theory in g, and N

0

6= 0 is the `spontaneous magnetization'

of the ground state. This identi�cation is made clearer by the simpler

statement

h0j�̂

z

i

j0i = �N

0

(1.13)

which also follows from the perturbation theory in g. We have N

0

= 1

for g = 0, but quantum 
uctuations at small g reduce N

0

to a smaller,

but non-zero, value.

Now we make the simple observation that it is not possible for states

which obey (1.9) and (1.12) to transform unto each other analytically

as a function of g. There must be a critical value g = g

c

at which

the large jx

i

� x

j

j limit of the two-point correlator changes from (1.9)

to (1.12)|this is the position of the quantum phase transition, which

shall the focus of intensive study in this book. Our arguments so far do

not exclude the possibility that there could be more than one critical

point, but this is known not to happen for H

I

, and we will assume here

that there is only one critical point at g = g

c

. For g > g

c

the ground

state is, as noted earlier, a quantum paramagnet, and (1.9) is obeyed.

We will �nd that as g approaches g

c

from above, the correlation length,

�, diverges as in (1.2). Precisely at g = g

c

, neither (1.9) nor (1.12) is

obeyed, and we �nd instead a power-law dependence on jx

i

�x

j

j at large

distances. The result (1.12) holds for all g < g

c

, when the ground state

is magnetically ordered. The spontaneous magnetization of the ground

state, N

0

, vanishes as a power law as g approaches g

c

from below.

Finally, a comment about the excited states of H

I

. In �nite lattice,

there is necessarily a nonzero energy separating the ground state and

the �rst excited state. However, this energy spacing can either remain

�nite or approach zero in the in�nite lattice limit, the two cases being

identi�ed as having a gapped or gapless energy spectrum respectively.

We will �nd that there is an energy gap � which is non-zero for all

g 6= g

c

, but that it vanishes upon approaching g

c

as in (1.1), producing

a gapless spectrum at g = g

c

.

1.4.2 Quantum rotor model

We turn to the somewhat less familiar quantum rotor models. Elemen-

tary quantum rotors do not exist in nature; rather, each quantum rotor

is an e�ective quantum degree of freedom for the low energy states of

a small number of closely coupled electrons. We will �rst de�ne the
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quantum mechanics of a single rotor, and then brie
y motivate how it

might represent some physically interesting systems|more details on

this physical mapping will appear later.

Each rotor can be visualized as a particle constrained to move on the

surface of a (�ctitious) (N > 1)-dimensional sphere. The orientation

of each rotor is represented by an N -component unit vector
^
n

i

which

satis�es

^
n

2

= 1: (1.14)

The caret on
^
n

i

reminds us that the orientation of the rotor is a quan-

tum mechanical operator, while i represents the site on which the rotor

resides|we will shortly consider an in�nite number of such rotors resid-

ing on the sites of a d-dimensional lattice. Each rotor has a momentum

^
p

i

, and the constraint (1.14) implies that this must be tangent to the

surface of the N -dimensional sphere. The rotor position and momentum

satisfy the usual commutation relations

[n̂

�

; p̂

�

] = i�

��

(1.15)

on each site i; here �; � = 1 : : :N . (Here, and in the remainder of the

book, we will always measure time in units in which

�h = 1; (1.16)

unless stated explicitly otherwise. This is also a good point to note that

we will also set Boltzmann's constant

k

B

= 1 (1.17)

by absorbing it into the units of temperature, T .) We will actually �nd

it more convenient to work with the N(N�1)=2 components of the rotor

angular momentum

^

L

��

= n̂

�

p̂

�

� n̂

�

p̂

�

(1.18)

These operators are the generators of the group of rotation in N dimen-

sions, denoted O(N). Their commutation relations follow straightfor-

wardly from (1.15) and (1.18). The case N = 3 will be of particular

interest to us: for this we de�ne

^

L

�

= (1=2)�

��


L

�


(where �

��


is to-

tally antisymmetric tensor with �

123

= 1), and then the commutation

relation between the operators on each site are

[

^

L

�

;

^

L

�

] = i�

��


^

L




[

^

L

�

; n̂

�

] = i�

��


n̂




[n̂

�

; n̂

�

] = 0; (1.19)
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the operators with di�erent site labels all commute.

The dynamics of each rotor is governed simply by its kinetic energy

term; interesting e�ects will arise from potential energy terms which

couple the rotors together, and these will be considered momentarily.

Each rotor has the kinetic energy

H

K

=

Jeg

2

^

L

2

(1.20)

where 1=Jeg is the rotor moment of inertia (we have put a tilde over g

as we wish to reserve g for a di�erent coupling to be introduced below).

The Hamiltonian H

K

can be readily diagonalized for general values of

N by well-known group theoretical methods. We quote the results for

the physically important cases of N = 2; 3. For N = 2 the eigenvalues

are

Jeg`

2

=2=2 ` = 0; 1; 2; : : : ; degeneracy = 2� �

`;0

: (1.21)

Note that there is a non-degenerate ground state with ` = 0, while all

excited states are two-fold degenerate corresponding to a left or right

moving rotor. In physical applications, these states can be visualized as

the low-lying energy levels of a superconducting quantum dot: ` mea-

sures the deviation in the number of Cooper pairs on the dot from the

number found in the ground state, and Jeg is a measure of the inverse

self-capacitance of the dot. More details on this physical application

of N = 2 quantum rotors will appear in Chapter 10. For N = 3, the

eigenvalues of H

K

are

Jeg`(`+ 1)=2 ` = 0; 1; 2; : : : ; degeneracy = 2`+ 1; (1.22)

corresponding to the familiar angular momentum states in 3 dimension.

These states can be viewed as representing the eigenstates of an even

number of antiferromagnetically-coupled Heisenberg spins. The ground

state is a spin singlet, as can be expected from an antiferromagnetic

coupling which prefers spins in opposite orientations. This mapping will

be discussed more explicitly in Section 5.1.1.1 and Chapter 13 where

will see that there is a general and powerful correspondence between

quantum antiferromagnets and N = 3 rotors. The O(3) quantum ro-

tors also describe the double layer quantum Hall systems discussed in

Section 1.3 [120, 121].

We are ready to write down the full quantum rotor Hamiltonian, which



16 Basic concepts

shall be the focus of intensive study in Part 2. It is

H

R

=

Jeg

2

X

i

^

L

2

i

� J

X

hiji

^
n

i

�
^
n

j

: (1.23)

We have augmented the sum of kinetic energies of each site with a cou-

pling, J , between rotor orientations on neighboring sites. This coupling

energy is minimized by the simple `magnetically ordered' state in which

all the rotors are oriented in the same direction. In contrast, the rotor

kinetic energy is minimized when the orientation of the rotor is maxi-

mally uncertain (by the uncertainty principle), and so the �rst term in

H

R

prefers quantum paramagnetic state in which the rotors do not have

a de�nite orientation, i.e., hni = 0. Thus the roles of the two terms

in H

R

closely parallel those of the terms in the Ising model H

I

. As in

Section 1.4.1, for eg � 1, when the kinetic energy dominates, we expect

a quantum paramagnet in which, following (1.9),

h0j
^
n

i

�
^
n

j

j0i � e

�jx

i

�x

j

j=�

: (1.24)

Similarly, for eg � 1, when the coupling term dominates, we expect a

magnetically ordered state in which, as in (1.12),

lim

jx

i

�x

j

j!1

h0j
^
n

i

�
^
n

j

j0i = N

2

0

(1.25)

Finally, we can anticipate a second-order quantum phase transition be-

tween the two phases at eg = eg

c

, and the behavior of N

0

and � upon

approaching this point will be similar to that in the Ising case. These

expectations turn out to be correct for d > 1, but we will see that they

need some modi�cations for d = 1. In one dimension, we will show that

eg

c

= 0 for N � 3, and so the ground state is a quantum paramagnetic

for all non-zero eg. The case N = 2, d = 1 is special: there is a transition

at a �nite eg

c

, but the divergence of the correlation length does not obey

(1.2) and the long-distance behavior of the correlation function eg < eg

c

di�ers from (1.25)|this case will not be considered until Section 14.3

in Part 3.
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The mapping to classical statistical

mechanics: single site models

This chapter will discuss the reason for the central importance of the

quantum Ising and rotor models in the theory of quantum phase tran-

sitions, quite apart from any experimental motivations. It turns out

that the quantum transitions in these models in d dimensions are inti-

mately connected to certain well-studied �nite temperature phase tran-

sitions in classical statistical mechanics models in D = d + 1 dimen-

sions [134, 483, 382, 164, 537]. We will then be able to transfer much of

the sophisticated technology developed to analyze these classical models

to the quantum models of interest here.

We will discuss this mapping here in the simplest context of d = 0,

D = 1: we will consider single site quantum Ising and rotor models, and

explicitly discuss their mapping to classical statistical mechanics models

in D = 1 (the cases d > 0 will then be discussed in Chapter 3). These

very simple classical models in D = 1, actually do not have any phase

transitions. Nevertheless, it is quite useful to examine them thoroughly

as they do have regions in which the correlation `length' � becomes

very large: the properties of these regions are very similar to those

in the vicinity of the phase transition points in higher dimensions. In

particular, we will introduce the central ideas of the scaling limit and

universality in this very simple context. We will then go on to map

the classical models to equivalent zero-dimensional quantum models and

demonstrate that this mapping becomes exact in the scaling limit.

The following sections will actually carry out the quantum-to-classical

mapping in reverse. With the bene�t of hindsight, we will begin by ex-

amining certain D = 1 classical statistical mechanics model and show

that they are intimately related to single-site quantum Ising and ro-

tor models. The classical models we shall study are the D = 1, N -

component classical spin ferromagnets, and are surely familiar to most

17



18 The mapping to classical statistical mechanics: single site models

readers in other contexts. We will consider the N = 1; 2; 3 case in the

following sections in turn. The models with N > 3 are very similar to

the case N = 3.

For a traditional, `classical' perspective of these models, the reader is

referred to the review by Thompson [490].

2.1 The classical Ising chain

Here we will consider the D = 1, N = 1 classical spin ferromagnet, more

commonly known as the ferromagnetic Ising chain [242]. This chain has

the partition function

Z =

X

f�

z

i

=�1g

exp (�H) (2.1)

where �

z

i

are Ising spins on sites i of a chain which take the values �1,

and H is given by

H = �K

M

X

i=1

�

z

i

�

z

i+1

� h

M

X

i=1

�

z

i

: (2.2)

In all our discussion of classical statistical mechanics models we absorb

its `temperature' into the de�nition of the coupling constants, as we

have done above for K and h; in contrast, the temperature of quantum-

mechanical models will always be explicitly indicated, and we will reserve

the symbol T for it|as we will see below, the total length of the classical

model will determine T . There are a total of M Ising spins (M large),

and for convenience we have also added a uniform magnetic �eld h acting

on all the spins. We will assume periodic boundary conditions, and

therefore �

z

M+1

� �

z

1

.

We will evaluate the partition function exactly following the original

solution of Ising [242]. The trick is to write Z as a trace over a matrix

product, with one matrix for every site on the chain. Notice that the

partition functions involves the exponential of a sum of terms on the

sites of the chain: rewrite this as the product of exponentials of each

term, and we easily obtain

Z =

X

f�

z

i

g

M

Y

i=1

T

1

(�

z

i

; �

z

i+1

)T

2

(�

z

i

) (2.3)

where T

1

(�

z

1

; �

z

2

) = exp(K�

z

1

�

z

2

) and T

2

(�

z

) = exp(h�

z

). Now notice

that (2.3) has precisely the structure of a matrix product, if we interpret
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the two possible values of �

z

i

as the index labeling the rows and columns

of a 2� 2 matrix T

1

; T

2

has only one index and so should be interpreted

as a diagonal matrix. So we have

Z = Tr (T

1

T

2

T

1

T

2

� � �M times � � �) (2.4)

where the summation over the f�

z

i

g has been converted to a matrix trace

because of the periodic boundary conditions, and

T

1

=

�

e

K

e

�K

e

�K

e

K

�

T

2

=

�

e

h

0

0 e

�h

�

: (2.5)

The matrix T

1

T

2

is identi�ed as the `transfer matrix' of the Ising chain

H (Eqn (2.2)), the nomenclature suggesting that it transfers the trace

over spins from each site to its neighbor. We can manipulate (2.4) into

Z = Tr (T

1

T

2

)

M

= Tr

�

T

1=2

2

T

1

T

1=2

2

�

M

= �

M

1

+ �

M

2

(2.6)

where �

1;2

are the eigenvalues of the symmetric matrix

T

1=2

2

T

1

T

1=2

2

=

�

e

K+h

e

�K

e

�K

e

K�h

�

; (2.7)

given by

�

1;2

= e

K

cosh(h)�

�

e

2K

sinh

2

(h) + e

�2K

�

1=2

: (2.8)

With these eigenvalues, (2.6) leads to an exact result for the free energy

F = � lnZ . We will return to interpreting this result for F momentarily.

Now, we show how the above approach can also lead to exact infor-

mation on correlation functions. For simplicity, we will consider only

the case h = 0 (the generalization to non-zero h is not di�cult), and

describe the two-point spin correlator




�

z

i

�

z

j

�

=

1

Z

X

f�

z

i

g

exp(�H)�

z

i

�

z

j

(2.9)

Going through exactly the same steps as those in the derivation of (2.6)

we see that




�

z

i

�

z

j

�

=

1

Z

Tr

�

T

i

1

�̂

z

T

j�i

1

�̂

z

T

M�j

1

�

; (2.10)

where we have assumed that j � i, and �

z

(without a site index) is also

interpreted as a 2 � 2 diagonal Pauli matrix �̂

z

in (1.6). The trace in
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(2.10) can be evaluated in closed form in the basis in which T

1

is diagonal.

The eigenvectors of T

1

are the states in (1.8) and the corresponding

eigenvalues are �

1

= 2 cosh(K) and �

2

= 2 sinh(K). Now using the

matrix elements h! j�

z

j !i = h j�

z

j  i = 0 and h! j�

z

j  i = h!

j�

z

j  i = 1 we get from (2.6) and (2.10)




�

z

i

�

z

j

�

=

�

M�j+i

1

�

j�i

2

+ �

M�j+i

2

�

j�i

1

�

M

1

+ �

M

2

(2.11)

The equations (2.10) and (2.11) are our main results on the Ising chain

with an arbitrary number of sites,M . While simple, they contain a great

deal of useful information, as we will now show; much of the structure

we will extract below generalizes to more complex models.

Let us examine the form of the correlations in (2.11) in the limit of

an in�nite chain (M !1); then we have




�

z

i

�

z

j

�

= (tanh(K))

j�i

(2.12)

It is useful for the following discussion to label the spins not by the

site index i, but by a physical length co-ordinate � ; we have chosen the

symbol � , rather than the more conventional x, because we will shortly

interpret this `length' as the imaginary time direction of a quantum

problem. So if we imagine that the spins are placed on a lattice of

spacing a, then �

z

(�) � �

z

j

where

� = ja: (2.13)

With this notation, we can write (2.12) as

h�

z

(�)�

z

(0)i = e

�j� j=�

(2.14)

where the correlation length, �, is given by

1

�

=

1

a

ln coth(K): (2.15)

We emphasize that the symbol � always represents the actual correlation

length at h = 0; the actual correlation length for h 6= 0 will, of course,

be di�erent. In the large K limit, the correlation length becomes much

larger than the lattice spacing, a:

�

a

�

1

2

e

2K

� 1 K � 1: (2.16)

In the sequel, we shall primarily be interested in physics on the scale of

order �, in the regime where � is much greater than a. It is precisely

in this situation that the concepts of the scaling limit and universality

become useful, and they are introduced in the following subsections.
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2.1.1 The scaling limit

The simplest way to think of the scaling limit is to �rst divide all lengths

into \large" and \small" lengths. For the Ising chain, we take the cor-

relation length �, the observation scale � , and the system size

L

�

�Ma; (2.17)

as our large lengths, and the lattice spacing, a, as the only small length.

The scaling limit of an observable is then de�ned as its value when all

corrections involving the ratio of small to large lengths are neglected.

There are two conceptually rather di�erent, but equivalent, ways of

thinking about the scaling limit. We can either send the small length a

to zero while keeping the large lengths �xed (as particle physicists are

inclined to do) or send all the large lengths to in�nity while keeping

a �xed (as is more common among condensed matter physicists). The

physics can only depend upon the ratio of lengths, so it is clear that the

two methods are equivalent. We shall choose among these points of view

at our convenience, and show that it is often very useful to straddle this

cultural divide and use the insights of both perspectives.

To complete the de�nition of the scaling limit, we also have to discuss

the manner in which the parameters K and h must be treated. From

(2.15), we see that K can be expressed in terms of the ratio of lengths

�=a; we can use this to eliminate explicit dependence upon K, and then

the scaling limit is speci�ed by the already speci�ed �=a! 1 limit. It

remains to discuss the behavior of h. In general, there is no a priori

way of determining this and one has to examine the structure of the

correlation functions to determine the appropriate limit. Let us guess

the answer here by a physical argument. The scaling limit involves the

study of largeK, when the spin correlation length becomes large. Under

these conditions, spins a few lattice spacings apart invariable point in

the same direction, and should there be sensitive to the mean magnetic

�eld h per unit length. This is measured by

e

h, de�ned by

e

h �

h

a

: (2.18)

So we take the scaling limit a ! 0 while keeping

~

h �xed; any other

choice would result in a limiting theory with spins under the in
uence

of a �eld with either in�nite or vanishing strength. Alternatively stated,

we have chosen 1=

~

h, a quantity with the dimensions of length, as one of

our large length scales.

We have assembled all the necessary steps for the scaling limit. Ex-
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press any observable in terms of the physical length � , replace the num-

ber of sites M by L

�

=a, solve (2.15) to express K in terms of �=a, and

use (2.18) to replace h by

e

h. Then take the limit a ! 0 at �xed � , L

�

,

�, and

e

h.

We �rst describe the results for the free energy F . The quantity with

the �nite scaling limit should clearly be the free energy density, F ,

F = �(lnZ)=Ma: (2.19)

First, from (2.8) we get in the scaling limit

�

1;2

�

�

2�

a

�

1=2

�

1�

a

2�

�

1 + 4

e

h

2

�

2

�

1=2

�

: (2.20)

Inserting this into (2.8), and using the identity lim

y!1

(1 + c=y)

y

= e

c

,

we get

F = E

0

�

1

L

�

ln

�

2 cosh

�

L

�

q

1=(4�

2

) +

~

h

2

��

(2.21)

where E

0

= �K=a is the ground state energy per unit length of the

chain in zero external �eld.

In a similar manner, we can take the scaling limit of the correlation

function in (2.11), which recall was in zero external �eld

e

h = 0. We

obtain

h�

z

(�)�

z

(0)i =

e

�j� j=�

+ e

�(L

�

�j� j)=�

1 + e

�L

�

=�

: (2.22)

The results (2.21), (2.22) are the main conclusions of this subsection.

2.1.2 Universality

The assertion of universality is that the results of the scaling limit are

not sensitive to the precise microscopic model being used. This is can be

seen as the formal consequence of the physically reasonable requirement

that correlations at the scale of the large � should not depend upon the

details of the interactions on the scale of the lattice spacing, a.

Let us describe this by an explicit example. Suppose, instead of using

the model H in (2.2), we worked with a Hamiltonian H

1

with both �rst

(K

1

) and second (K

2

) neighbor exchanges between the Ising spins �

z

.

This model can also be solved by the transfer matrix methods (one needs

a basis of 4 sites corresponding to the 4 states of two near-neighbor spins,

and the transfer matrix is 4 � 4), but we will not present the explicit

solution here. From the solution we can determine the correlation length,
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� of H

1

, which will be a function of both K

1

and K

2

. Now, as in

Section 2.3, express the free energy density in terms of �, and take the

limit a ! 0 at �xed �, L

�

, and

~

h. The implication of universality is

that the result will be precisely identical to (2.21), with E

0

given by the

ground state energy density of H

1

in zero �eld: E

0

= �(K

1

+K

2

)=a.

The reader is invited to check this assertion for this simple example.

We can make the above assertion more precise by introducing the

concept of a universal scaling function. We write (2.21) in the form

F = E

0

+

1

L

�

�

F

�

L

�

�

;

e

hL

�

�

; (2.23)

where �

F

is the universal scaling function, whose explicit value can be

easily deduced by comparing with (2.21). Notice that the arguments

of �

F

are simply the two dimensionless ratios that can be made out of

the three large lengths at our disposal: L

�

, �, and 1=

~

h. The prefactor,

1=L

�

, in front of �

F

is necessary because the free energy density has

dimensions of inverse length.

As its name implies, the �

F

is independent of microscopic details. In

contrast, E

0

, the ground state energy of the Ising chain, clearly depends

sensitively on the values of the microscopic exchange constants, and is

therefore identi�ed as a non-universal additive contribution to F .

In a similar manner, we can introduce a universal scaling function of

the two-point correlation function. We have

h�

z

(�)�

z

(0)i = �

�

�

�

L

�

;

L

�

�

;

e

hL

�

�

(2.24)

where �

�

is another universal scaling function, and there is now no

non-universal additive constant. Again �

�

is a function of all the inde-

pendent dimensionless combinations of large lengths; there is no prefac-

tor because the correlator is clearly dimensionless. We can read o� the

value of �

�

(y

1

; y

2

; 0) by comparing (2.24) with (2.22), but determining

the full function �(y

1

; y

2

; y

3

) requires knowledge of the lattice correlator

in the presence of a non-zero h, which is somewhat tedious to obtain. A

simpler method will become apparent in the following subsection.

2.1.3 Mapping to a quantum model: Ising spin in a

transverse �eld

We will show the statistical mechanics of the Ising chain can be mapped

onto the quantum mechanics of a single Ising spin [483, 164]. Further,
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as stated in the introduction to this chapter, correlators of the quantum

spin will precisely reproduce the scaling limit of the classical Ising chain.

Let us return to the expressions (2.4), (2.5), and write the transfer

matrices T

1

, T

2

in terms of ratios of \large" to small length scales. We

have

T

1

= e

K

(1 + e

�2K

�̂

x

)

� e

K

(1 + (a=2�)�̂

x

)

� exp (a(�E

0

+ (1=2�)�̂

x

) :

T

2

= exp

�

a

e

h�̂

z

�

; (2.25)

where �̂

x;z

are the Pauli matrices in (1.6). Notice that both T

1;2

have the

form e

aO

, where O is some operator, acting on the j "; #i states, which is

independent of a. Using the fact that e

aO

1

e

aO

2

= e

a(O

1

+O

2

)

(1+O(a

2

)),

we can write (2.4) in the limit a! 0 as

T

1

T

2

� exp(�aH

Q

)

Z = (T

1

T

2

)

M

� Tr exp(�H

Q

=T ) (2.26)

where

H

Q

= E

0

�

�

2

�̂

x

�

~

h�̂

z

; (2.27)

with

T �

1

L

�

; � �

1

�

: (2.28)

We have introduced the fundamental quantum Hamiltonian H

Q

. It de-

scribes the dynamics of a single Ising quantum spin, whose Hilbert space

consists of the two states j "; #i, and which is under the in
uence of a

longitudinal �eld

~

h, and a transverse �eld �; it is the single site ver-

sion of (1.5) with an additional longitudinal �eld. Notice, from the �rst

relation in (2.26), that the transfer matrix of the classical chain H is

the quantum evolution operator e

�H

Q

�

over an imaginary time � = a,

the lattice spacing: so the transfer from one site to the next is similar

to evolution in imaginary time, and length co-ordinates for the classical

chain translate into imaginary time co-ordinates for the quantum model

H

Q

. The energy � is also the gap between the ground and excited state

of H

Q

in zero (longitudinal) �eld, and it is precisely equal to the inverse

of the correlation length of the classical Ising chain, as expected from the

length to time mapping. Further, the partition function of the quantum

spin is taken at a temperature T which precisely equals the inverse of
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the total length of the classical chain. These correspondences between a

gap of a quantum system and a correlation length of the corresponding

classical model along the `time' direction, and between the temperature

of the quantum system and the total length of the classical model, are

extremely general, and will apply to essentially all of the models we shall

consider in this book.

We can use (2.26) and (2.27) to quickly evaluate the free energy of

the quantum spin, F = �T lnZ . The eigenenergies of H

Q

are E

0

�

q

(�=2)

2

+

e

h

2

, and we have

F = E

0

� T ln

�

2 cosh

�

q

(�=2)

2

+

~

h

2

��

(2.29)

which agrees precisely with the scaling limit of the classical Ising chain

(2.21). Indeed, the single spin quantum Hamiltonian H

Q

is precisely the

theory describing the universal scaling properties of the entire class of

classical Ising chains with short range interactions. Statements of this

type are often shortened to \H

Q

is the scaling theory of H".

The correspondence between H

Q

and H also extends to correlation

functions. Let us de�ne the time-ordered correlator, G of H

Q

in imagi-

nary time by

G(�

1

; �

2

) =

�

1

Z

Tr

�

e

�H

Q

=T

�̂

z

(�

1

)�̂

z

(�

2

)

�

for �

1

> �

2

1

Z

Tr

�

e

�H

Q

=T

�̂

z

(�

2

)�̂

z

(�

1

)

�

for �

1

< �

2

; (2.30)

where �̂

z

(�) is de�ned by the imaginary time evolution under the H

Q

:

�̂

z

(�) � e

H

Q

�

�̂

z

e

�H

Q

�

: (2.31)

Now, upon carrying through the mapping described above for the free

energy for the case of the correlation function, we �nd that

G(�

1

; �

2

) = lim

a!0

h�

z

(�

1

)�

z

(�

2

)i

H

; (2.32)

where we have emphasized by the subscript that the average on the

right hand side is for the classical model with Hamiltonian H . The

time-ordered functions appear in the quantum problem for the same

reason we had to assume j � i in (2.10): as the transfer matrix evolves

the system from `earlier' sites to `later' sites, the earlier �̂

z

operators

appear �rst in the trace.

The representation (2.30) also makes the origin of the mapping be-

tween the quantum gap, �, and the classical correlation length, �, in
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(2.28) quite clear. We can evaluate (2.30) at T = 0 by inserting a com-

plete set of H

Q

eigenstates and obtain the general representation

G(�

1

; �

2

) =

X

n

jh0j�

z

jnij

2

e

�(E

n

�E

0

)j�

1

��

2

j

; (2.33)

where jni are all the eigenstates of H

Q

with eigenvalues E

n

, and j0i is

the ground state. For su�ciently large j�

1

� �

2

j, the sum over n will

be dominated by lowest energy state for which the matrix element is

non-zero, and this gives an exponential decay of the correlation function

over a `length' � = 1=(E

1

�E

0

) = 1=�. Of course, in the present simple

system there are only a total of two states, but this result is clearly more

general.

It is quite easy to evaluate (2.30) for H

Q

, and the direct quantum

computation is much simpler than the use of the classical mapping in

(2.32). We �nd

G(�

1

; �

2

) = �

�

 

T (�

1

� �

2

);

�

T

;

e

h

T

!

(2.34)

where �

�

is precisely the same scaling function that appeared in (2.24),

and can be computed from (2.30) to be

�

�

(y

1

; y

2

; y

3

) =

4y

2

3

y

2

2

+ 4y

2

3

+

y

2

2

y

2

2

+ 4y

2

3

cosh

�

p

y

2

2

+ 4y

2

3

(1� 2jy

1

j)=2

�

cosh

�

p

y

2

2

+ 4y

2

3

=2

�

(2.35)

It can be checked that the y

3

= 0 case of this result agrees with the

combination of (2.22) and (2.24).

2.2 The classical XY chain and a O(2) quantum rotor

We will consider the D = 1, N = 2 classical ferromagnet; this is also

referred to as the XY ferromagnet. We generalize (2.1,2.2) to N = 2 by

replacing �

z

i

by a two-component unit-length variable n

i

. This modi�es

(2.1) to

Z =

Y

i

Z

Dn

i

�(n

2

i

� 1) exp (�H) ; (2.36)

for H we modify (2.2) to

H = �K

M

X

i=1

n

i

� n

j

�

M

X

i=1

h � n

i

; (2.37)
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where, as in the Ising case, we have added a uniform �eld h = (h; 0).

(3.3). It is convenient to parameterize the unit length classical spins, n

i

,

by

n

i

= (cos �

i

; sin �

i

) (2.38)

where the continuous angular variables �

i

, run from 0 to 2�. In these

variables, H takes the form

H = �K

M

X

i=1

cos(�

i

� �

i+1

)� h

M

X

i=1

cos �

i

; (2.39)

and the partition function is

Z =

Z

2�

0

M

Y

i=1

d�

i

2�

exp(�H): (2.40)

We again assume periodic boundary conditions with �

M+1

� �

1

. Notice

that in zero �eld, H remains invariant if all the spins are rotated by

the same angle �, �

i

! �

i

+ �, and so our results will not depend

upon the particular orientation chosen for h. The partition function

can be evaluated by transfer matrix methods [156, 255] quite similar

to those used for the Ising chain. Although we will not use such a

method to obtain our results, we nevertheless describe the main steps

for completeness. First write Z in the form

Z =

Z

2�

0

M

Y

i=1

d�

i

2�

h�

1

j

^

T j�

2

ih�

2

j

^

T j�

3

i � � � h�

M

j

^

T j�

1

i

= Tr

^

T

M

(2.41)

where the symmetric transfer matrix operator

^

T is de�ned by

h�j

^

T j�

0

i = exp

�

K cos(� � �

0

) +

h

2

(cos � + cos �

0

)

�

; (2.42)

and the trace is clearly over continuous angular variable �. As in the

Ising case, we have to diagonalize the transfer matrix

^

T by solving the

eigenvalue equation

Z

2�

0

d�

0

2�

h�j

^

T j�

0

i	

�

(�

0

) = �

�

	

�

(�) (2.43)

for the eigenfunctions 	

�

(�) (with 	

�

(� + 2�) = 	

�

(�)), and corre-

sponding eigenvalues �

�

. Then the partition function Z is simply

Z =

X

�

�

M

�

(2.44)
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where the sum extends over the in�nite number of eigenvalues �

�

. The

solution of (2.43) is quite involved, and the present approach is a rather

convoluted method of obtaining the universal properties of H .

Instead, it is useful to approach the problem with a little physical

insight, and take the scaling limit at the earliest possible stage. We

anticipate, from our experience with the Ising model, that the universal

scaling behavior will emerge at large values of K. For this case, �

i

is

not expected to vary much from one site to the next, suggesting that it

should be useful to expand in terms of gradients of �

i

. So we de�ne a

continuous co-ordinate � = ja, where a is the lattice spacing, and the

label � anticipates its eventual interpretation as the imaginary time co-

ordinate of a quantum problem. Then to lowest order in the gradients

of the function �(� = ja) � �

j

, the Hamiltonian H takes the continuum

form H

c

:

H

c

[�(�)] =

Z

L

�

0

d�

"

�

4

�

d�(�)

d�

�

2

�

e

h cos �(�)

#

(2.45)

where

� = 2Ka

e

h =

h

a

; (2.46)

and as before L

�

= Ma. The coe�cient of the gradient squared term

is clearly a length (along the time direction) and we have written this

length in terms of the symbol �: the parameterization anticipates some

of our subsequent results where we will see that � is the h = 0 correlation

length of an in�nite XY chain. With this new form of H , the partition

function becomes a functional integral

Z

c

=

1

X

p=�1

Z

�(L

�

)=�(0)+2�p

D�(�) exp (�H

c

[�(�)]) (2.47)

The integral is taken over all functions �(�) that satisfy the speci�ed

boundary conditions. As we can continuously follow the value of � from

� = 0 to � = L

�

, its actual value, and not just the angle modulo 2�,

becomes signi�cant; so we allow for an overall phase winding by 2�p in

the boundary conditions. This boundary condition is the only remnant

of the periodicity of the original lattice problem as �(�) is allowed to

assume all real values. We have also absorbed an overall normalization

factor into the de�nition of the functional integral, and will therefore

not keep track of additive non-universal constants to the free energy like

E

0

of Section 2.1.
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We now assert that Z

c

and H

c

are the universal scaling theories of

H and Z in (2.39,2.40). So if we started with a di�erent microscopic

model, its universal properties would also be described by Z

c

, with the

only change being in the values of � and

~

h. For instance if we had

a Hamiltonian like (2.39), but with j'th neighbor interactions K

j

, its

continuum limit would also be H

c

, with the same value for

e

h, but �

modi�ed to

� = 2a

1

X

j=1

K

j

j

2

(2.48)

This continuum limit is valid for all models in which the summation over

j in (2.48) converges. The universality of H

c

also applies to models in

which the constraint n

2

i

= 1 is not imposed rigidly, and 
uctuations in

the amplitude of n

i

are allowed about their mean value. The prescription

for determining the input value of � is however still very simple: set the

magnitude of n

i

to its optimum value and measure the energy change of

a uniform twist. Corrections due to the 
uctuations in the magnitude

of n

i

about this optimum value will not modify the universal scaling

theory (2.46).

Before turning to an evaluation of Z

c

and its associated correlators,

let us describe the scaling forms expected in the universal theory. These

can be deduced by simple dimensional analysis. In the present case �,

L

�

, and

e

h are the large lengths of the theory, and we simply make the

appropriate dimensionless combinations. So we have for the free energy

F = �(lnZ

c

)=L

�

and the two-point correlator:

F =

1

L

�

�

F

�

L

�

�

;

e

hL

�

�

hn(�) � n(0)i = �

n

�

�

L

�

;

L

�

�

;

e

hL

�

�

(2.49)

where �

F

and �

n

are universal functions, portions of which will be

determined explicitly below.

Let us evaluate Z

c

in zero �eld

e

h = 0. To satisfy the boundary

conditions let us decompose

�(�) =

2�p�

L

�

+ �

0

(�) (2.50)

where �

0

(�) satis�es periodic boundary conditions �

0

(L

�

) = �

0

(0). In-

serting this into (2.45) we �nd that the cross term between the two pieces

of �(�) vanishes because of the periodic boundary conditions on �

0

, and
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(2.47) becomes

Z

c

(

e

h = 0) =

 

1

X

p=�1

exp

�

�

�

2

p

2

�

L

�

�

!

�

Z

�

0

(L

�

)=�

0

(0)

D�

0

(�) exp

 

�

�

4

Z

L

�

0

d�

�

d�

0

d�

�

2

!

(2.51)

Now notice that the last functional integral is simply the familiar Feyn-

man path integral for the amplitude of a single quantum mechanical

free particle, of mass �=2 with co-ordinate �

0

, to return to its starting

position after imaginary time L

�

. Using the standard expression for this

we �nd �nally

Z

c

(

e

h = 0) =

�

�

4�L

�

�

1=2

A(��=L

�

); (2.52)

where A(y) is the elliptic theta function de�ned by

A(y) =

1

X

p=�1

e

��p

2

y

: (2.53)

This result is clearly consistent with the scaling form for the free energy

density F = �(lnZ

c

)=L

�

in (2.49).

Let us push the analogy with the quantum mechanics of a particle a bit

further, and complete the quantum-classical mapping by obtaining an

explicit expression for the quantum Hamiltonian, H

Q

, which describes

the scaling limit. Note that Z

c

in (2.47), with the summation over p

included, can be interpreted as the Feynman path integral of a particle

constrained to move on a circle of unit radius; the angular co-ordinate

of the particle is �, and p represents the number of times the particle

winds around the circle in its motion from imaginary time � = 0 to

� = L

�

. The term proportional to

e

h is then a potential energy term

which preferentially locates the particle at � = 0. The Hamiltonian of

this quantum particle is then

H

Q

= ��

@

2

@�

2

�

e

h cos � (2.54)

where, as we will see shortly, � is de�ned as in the Ising case to be the

gap of H

Q

in zero external �eld. As the mass of the quantum particle

is 1=2�, we have by comparing with (2.45)

� =

1

�

; (2.55)
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This is precisely of the form (2.28), and is another realization of the fact

that the gap of the quantum model is equal to the correlation `length'

of the classical model along the imaginary time direction. For some of

our subsequent discussion it is useful to express H

Q

solely in terms of

quantum operators. Let
^
n be the Heisenberg operator corresponding to

n. Let us also de�ne

^

L as the angular momentum operator of the rotor

^

L =

1

i

@

@�

: (2.56)

Then we have the commutation relation

[

^

L; n̂

�

] = i�

��

n̂

�

(2.57)

where �; � extend over the two co-ordinate axes, x; y in the spin plane,

and �

xy

= ��

yx

= 1, with other components zero. These are precisely

the N = 2 case of the commutation relations following from (1.15) and

(1.18). The Hamiltonian H

Q

is clearly

H

Q

= �

^

L

2

�

e

h �
^
n (2.58)

which is simply the quantum rotor model (1.20) in the presence of �eld

e

h, 1=2� is the moment of inertia of the rotor, and commutation relation

(2.57) is the N = 2 analog of (1.19). We have established the needed

result: the scaling limit of the D = 1 classical XY ferromagnet is given

exactly by the Hamiltonian of a single O(2) quantum rotor.

The Hamiltonian H

Q

is related to the transfer matrix

^

T (in (2.42) of

the lattice XY model by a relationship identical to that found in (2.26).

By a gradient expansion of (2.42) the reader can verify that

^

T � exp(�aH

Q

) (2.59)

to leading order in the lattice spacing a. So again, the transfer matrix

`evolves' the system by an imaginary time a.

We can use the quantum-classical mapping, and obtain explicit ex-

pressions for the universal scaling functions of the classical problem in

(2.49). First, using the mapping (3.13) T = 1=L

�

, let us write down the

scaling forms (2.49) in the quantum language

F = T�

F

 

�

T

;

e

h

T

!

hn(�) � n(0)i = �

n

 

T�;

�

T

;

e

h

T

!

: (2.60)

We see here a structure that was used in (2.34), and which shall be used
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throughout the book. We characterize the universal properties by the

\small" energy scales �,

e

h (these are the analogs of the \large" length

scales of the corresponding classical problem, while the non-universal

behavior at \small" length scales in the classical system maps onto high

energy physics in the quantum system which is not of interest here).

These \small" energy scales then appear in universal scaling functions

of dimensionless ratio of these energies with the physical temperature,

T .

Let us turn to the evaluation of the scaling functions. The eigen-

states,  

�

(�), and eigenvalues �

�

of H

Q

are determined by solving the

Schr�odinger equation

H

Q

 

�

(�) = �

�

 

�

(�) (2.61)

subject to the boundary condition  

�

(0) =  

�

(2�). The equation (2.61)

can be considered as the continuum scaling limit of the eigenvalue equa-

tion (2.43) with the correspondences (2.59) and �

�

/ exp(�a�

�

). The

continuum limit partition function Z

c

can be expressed directly in terms

of H

Q

:

Z

c

= Tr exp(�H

Q

=T )

=

X

�

exp(��

�

=T ); (2.62)

where T = 1=L

�

. The two-point correlator of n̂ can also be expressed in

the quantum language

hn(�) � n(0)i =

1

Z

c

Tr

�

e

�H

Q

=T

e

H

Q

�

^
ne

�H

Q

�

�
^
n

�

=

1

Z

c

X

�;�

jh�j
^
nj�ij

2

e

��

�

=T

e

�(�

�

��

�

)�

(2.63)

where the summation over �; � extends over all the eigenstates of H

Q

,

and we have assumed � > 0.

The solution of (2.61), combined with (2.62), (2.63) provides the com-

plete solution of the universal scaling properties of the classical XY

chain. An elementary solution of the eigenvalue equation (2.61) is only

possible at

e

h = 0, to which we will restrict our attention form now on.

In zero �eld, the eigenstates are  

m

(�) / e

im�

, where m is an arbitrary

integer, and the corresponding eigenvalues are �m

2

(these are the states

of (1.21)). The ground state has zero energy (m = 0), and, as promised,

the gap to the lowest excited states (m = �1) is �. We can therefore
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evaluate the partition function

Z

c

(

e

h = 0) =

1

X

m=�1

exp

�

�

�m

2

T

�

= A(�=�T ); (2.64)

a result that satis�es (2.60); the function A(y) was de�ned in (2.53).

Comparing this with (2.52), and using (2.55), (2.28), it does not appear

obvious that the two expressions for Z

c

are equivalent. However, equal-

ity can be established by use of the following inversion identity, which

the reader is invited to establish as a simple application of the Poisson

summation formula:

A(y) =

A(1=y)

p

y

: (2.65)

In terms of the original classical model, the expression (2.52) for Z

c

is

useful for large � (or large values of K, corresponding to a low classical

\temperature" which has been absorbed into the de�nition of K) when

its series converges rapidly; conversely the dual expression (2.64) is most

useful for small � (or small K and high classical \temperatures").

Let us also discuss the form of the correlation functions at

e

h = 0.

Recalling (2.38), and the wavefunction  

m

(�) / e

im�

, we have the very

simple matrix element

jhmj
^
njm+ 1ij

2

= 1 (2.66)

and all others vanish; the correlation function follows simply from (2.63),

and it is clear that the result agrees with (2.60). In particular, at T = 0

or L

�

=1 we have

hn(�) � n(0)i = e

��j� j

; (2.67)

which establishes, as in the Ising chain, the inverse of the gap � as the

correlation length of the classical chain.

2.3 The classical Heisenberg chain and a O(3) quantum rotor

We now generalize the results of the previous section to the D = 1,

N = 3 case. The N = 3 classical ferromagnet is also known as the

classical Heisenberg chain. The partition function is still given by (2.36)

and the classical Hamiltonian by (2.37), with the only change that n is

now a three-component unit vector. Taking its continuum limit as for
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N = 2 we replace (2.45) and (2.47) by the partition function

Z

c

= Dn(�)�(n

2

� 1) exp (�H

c

[n(�)])

H

c

[n(�)] =

Z

L

�

0

d�

"

(N � 1)�

4

�

dn(�)

d�

�

2

�

e

h � n

#

; (2.68)

with n(0) = n(L

�

); now � = 2Ka=(N�1) and

e

h = h=a as in (2.46). We

have chosen the de�nition of � by anticipating a later computation in

which � will be seen to be the correlation length. We will only consider

the case N = 3 in this subsection, and have quoted, without proof,

the form for general N ; notice that (2.68) agrees with (2.45) for N =

2. Unlike (2.45), it is not possible to evaluate the partition function

(2.68) in this form. Recall that for the N = 2 case of (2.45) we had a

simple angular parameterization in which H became purely quadratic in

the angular variable: one could parameterize the 3-component n using

spherical co-ordinates, but the resulting H is not simply quadratic.

Further progress towards the evaluation of Z

c

can however be made

after the quantum-classical mapping. To do this, note as in (2.51),

the functional integral in (2.68) can be interpreted as the imaginary-

time Feynman path integral for a particle moving in a 3-dimensional

space with co-ordinate n. Then the term with (@n=@�)

2

is its kinetic

energy and its mass is 1=�, and the term proportional to

e

h is like a

\gravitational potential energy". The constraint that n

2

= 1 may be

viewed as a very strong potential that prefers the particle move on the

surface of a unit sphere. We can therefore perform the quantum-classical

mapping simply by writing down the Schr�odinger Hamiltonian, H

Q

, for

this particle. The restriction that the motion take place on the surface of

a sphere simply means that the radial kinetic energy term of the particle

should be dropped. The resulting H

Q

generalizes (2.58) to N = 3

H

Q

=

�

2

^

L

2

�

e

h � n (2.69)

where the angular momentum operator

^

L has 3 components (in general

it has N(N � 1)=2 components); again this is simply the N = 3 single

rotor model H

K

in (1.20) in the presence of a �eld

e

h. The operators

^

L and
^
n obey the commutation relations in (1.19). The parameter �

is again the energy gap at

e

h = 0, as we will see below, and is given by

� = 1=�, as in (2.55). If we determine all the eigenvalues �

�

of H

Q

then

the explicit expression for Z

c

is given by (2.62). Determination of the

eigenvalues of H

Q

can, for instance, be done by solving the Schr�odinger
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di�erential equation for a wavefunction  

�

(n) on the surface of a unit

sphere. The Hamiltonian in Schr�odinger's equation is given by H

Q

, with

^

L a di�erential operator

L

�

= �i�

��


n

�

@

@n




: (2.70)

So to summarize, the complete solution of the classical partition function

Z

c

is given by mapping the problem to the dynamics of a O(3) quantum

rotor with Hamiltonian H

Q

de�ned by (2.69,1.19,2.70), and the value of

Z

c

is given by (2.62).

We conclude this section by explicitly determining the eigenvalues for

e

h = 0. In this case, it is evident that the eigenfunctions  

�

are simply

the spherical harmonics, and the eigenvalues are

�`(`+ 1) ` = 0; 1; 2 : : :1 (2.71)

with degeneracy 2`+ 1 (as in (1.22)), so that

Z

c

(

e

h = 0) = Tre

�H

Q

=T

=

1

X

`=0

(2`+ 1) exp

�

�

�

2T

`(`+ 1)

�

; (2.72)

replacing (2.64), and as before T = 1=L

�

. The ground state is the non-

degenerate ` = 0 state, and it can be checked that the energy gap is

�. The correlations continue to obey (2.67), and so there is no long-

range order in the classical Heisenberg chain, and the correlation length

= 1=�.
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Overview

This chapter will begin by presenting the D > 1-dimensional classi-

cal statistical mechanical models which are `equivalent' (in a sense to

be made precise) to the quantum Ising and rotor models introduced in

Chapter 1. The universal properties of these transitions will be discussed

and we will argue that these are described by certain continuum �eld

theories. At the level of the these continuum theories it will be argued

quite generally that, at least in a formal sense, there is a classical sta-

tistical mechanical model associated with every second order quantum

phase transition. The nature of this general quantum-classical mapping

will be discussed and its limitations and utility will be highlighted.

We set the stage by simply writing down the D-dimensional clas-

sical statistical mechanical models which will be mapped onto the d-

dimensional quantum Ising and rotor models of Chapter 1, where

D = d+ 1; (3.1)

These models are the straightforward generalizations of the D = 1 mod-

els considered in Chapter 2. For N = 1, we consider the classical Ising

partition function (generalizing (2.1) and (2.2)

Z =

X

f�

z

i

=�1g

exp

0

@

K

X

<i;j>

�

z

i

�

z

j

1

A

(3.2)

where K is a dimensionless coupling which characterizes the `tempera-

ture' of the classical problem, the sum is over all 2

M

possible con�gu-

rations of Ising spins in a system of M sites in D dimensions (we will

set the external �eld h = 0 in this chapter, although it is not di�cult

to extend our considerations to include it). For N > 1, we generalize

36
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x

τ

a

Fig. 3.1. D-dimensional lattice on which (3.2) and (3.3) are de�ned. The

spatial co-ordinate x is a schematic for d = D�1 directions. The mappings of

Chapter 2 is performed independently on each of the columns represented by

the full lines: this yields a d-dimensional lattice of quantum Ising spins (for

(3.2) or quantum rotors (for (3.3) coupled to each other by the couplings on

the dashed lines. The quantum operator exp(�aH

I;R

) is the transfer matrix

of the classical models (3.2,3.3) from one d-dimensional `row' to the next.

(2.36) and (2.37) to

Z =

Y

i

Z

Dn

i

�(n

2

i

� 1) exp

0

@

K

X

<i;j>

n

i

� n

j

1

A

(3.3)

where n

i

is aN � 2 component unit vector on the sites, i, of a hypercubic

lattice in D dimensions.

We can perform a close analog of the manipulations of Chapter 2 on

the models (3.2) and (3.3), as illustrated in Fig 3.1. First, arbitrarily

pick out one of the D directions as the quantum `time' direction (the

� direction in Fig 3.1), and set up a transfer matrix formulation of the

partition function. The transfer matrix would `evolve' the con�guration

from one d = D � 1 dimensional plane to the next, just as the matrices

in, e.g., (2.41) couple two neighboring sites along the � direction for the

case D = 1. In other words, we perform the operations of Chapter 2

independently along each of the full lines of Fig. 3.1. The matrices

therefore act on a space which is the direct tensor product of the spaces

on each site in a d-dimensional spatial plane (a `time slice'). The models

(3.2) and (3.3) also have couplings within each time slice (represented

by the dashed lines in Fig 3.1), but these merely contribute additional
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diagonal terms to the transfer matrix. In this manner, we see that

the coupling K between two points separated by a full line in Fig 3.1

transforms into the transverse �eld term proportional to Jg in (1.5) for

N = 1 (as shown in Section 2.1), and into the term proportional to Jeg

in (1.23) for N � 2 (as shown in Sections 2.2 and 2.3). Moreover, the

coupling K between two sites separated by a dashed line will simply go

along for the ride, and become the inter-site coupling proportional to

J in (1.5) and (1.23). Then the transfer matrix from one time slice to

the next is exp(�aH

I;R

) (as in (2.26)), while the full partition function

becomes

Z � Tr exp (�H

I;R

=T ) ; (3.4)

where T = 1=L

�

= 1=(Ma), with M the number of d-dimensional rows

along the � direction (as in all the models of Chapter 2. We have now

established the advertised relationship between the D-dimensional clas-

sical partition functions (3.2,3.3) in a geometry which is of in�nite extent

in (D� 1) dimensions and of �nite length L

�

along the `time' direction,

and the quantum partition functions of the d-dimensional Hamiltonians

in (1.5) and (1.23) at a temperature T = 1=L

�

.

The above discussion gives a qualitative and intuitive picture of the

mapping, but it is not numerically precise, as it glossed over the limit

of lattice spacing a ! 0 we had to take in Chapter 2. However, as

in Chapter 2, the quantum-classical mapping can be made exact by

considerations of universal properties in an appropriate scaling limit of

both models. Such a scaling limit must clearly be taken in a regime

where the correlation length is much larger than the lattice spacing.

We have already discussed such regions of large correlation length in

Chapter 1 for the quantum Ising and rotor models. Let us now do the

same for the classical models (3.2) and (3.3).

The models (3.2) and (3.3) are central to the theory of �nite temper-

ature phase transitions in classical statistical mechanics [63, 550, 247],

and readers should be already be familiar with the basic concepts (the

cited texts are good places to review these). For all values of N inD > 2,

and for N = 1; 2 in D = 2 these models display a phase transition be-

tween a low `temperature' magnetically ordered phase for K > K

c

and

a high `temperature' disordered phase for K < K

c

. These phases are

characterized by correlations of the order parameter �

z

;n in a manner

closely analogous to the magnetically ordered and quantum paramag-

netic phases of Chapter 1. So in the K < K

c

disordered phase we have,
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as in (1.24),

h
^
n

i

�
^
n

j

i � e

�jx

i

�x

j

j=�

; (3.5)

for large jx

i

� x

j

, where the average is with respect to the classical

partition function (3.3) and x

i

is aD-dimensional co-ordinate. Similarly,

for K > K

c

we have, in (1.25),

lim

jx

i

�x

j

j!1

h0j
^
n

i

�
^
n

j

j0i = N

2

0

; (3.6)

where N

0

is the spontaneous magnetization (this does not apply to the

special case D = 2, N = 1, where the behavior for K > K

c

will be

discussed in Section 14.3). Similar results hold for the N = 1 case with

the variable �

z

. Upon approaching K

c

, N

0

vanishes as a power-law, and

� diverges as

�

�1

� ajK �K

c

j

�

; (3.7)

with � a critical exponent. Again, an exception to this is the case N = 2,

D = 2 where the divergence of � has a di�erent form. Also for the cases

N > 2, D = 2 there is no phase transition at any �nite K, but there is

diverging correlation length for K !1, and most of the considerations

below apply to these cases too.

We can now make a precise statement of the quantum-classical map-

ping. The universal properties of the d-dimensional quantum Ising and

rotor models in their region of large correlation length are identical to

those of the D-dimensional classical models (3.2) and (3.3). Further,

correlators of the classical model in D dimensions map onto imaginary

time correlators of the d-dimensional quantum model, where one of the

classical D dimensions behaves like the quantum imaginary time di-

rection, and the remaining D � 1 classical directions map onto the d

spatial directions of the quantum model. This assertion is justi�ed by

the considerations of Chapter 2, the arguments made in the paragraph

following (3.3), and will be further supported by many of the compu-

tations in Part 2. The mapping has an immediate consequence: as the

quantum imaginary time direction is simply one of the spatial directions

of the classical model, we compare (3.7) and (1.1,1.2) and conclude that

we must have the dynamic exponent z = 1 for the quantum Ising/rotor

models.

Having identi�ed the appropriate universal scaling limit of the quan-

tum models, it is appropriate to ask (in the sense of the discussion below

(2.29)): what is the quantum theory which describe these universal prop-
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erties ? These turn out to be continuum quantum �eld theories which

will be introduced in the following section.

3.1 Quantum �eld theories

The following discussion will be carried out in the language of the

quantum Ising and rotor models. However, essentially the same ar-

guments can also be made for the classical models (3.2) and (3.3),

and these are discussed at considerable length in numerous excellent

texts [63, 550, 247]; we will refer to these at the end of the following

section.

We repeat the basic argument presented in Sections 2.1.1 and 2.1.2

for the D = 1 Ising chain, but apply it more generally. Returning to

the notation of Section 1.1, let us consider the regime where jg � g

c

j is

small, so that

�� J and �

�1

� �: (3.8)

Suppose further, that we are observing the system at a temperature T , a

length scale x, and a frequency scale !, and all of these are of order the

temperature, length and energy scales that can be created out of �, �,

and the fundamental constants. We will then be particularly interested

in dynamic response functions of the system near a quantum critical

point in the limit where the inequalities (3.8) are well satis�ed. From

a particle theorist's perspective, this means we are taking the limits

� ! 1 and J ! 1 while keeping �, �, x, ! and T �xed. In terms

of dimensionless parameters, this means we are sending �� ! 1 and

J=�!1, while keeping �h!=�, x=� and k

B

T=� �xed. A glance at (1.1)

and (1.2) shows that these limits can only be taken while tuning g to

become progressively closer to g

c

. The complementary condensed matter

theorist's perspective is that we are keeping � and J �xed and looking

at the system's response at small �, large � and at long distances and

times and low temperatures: the two approaches are clearly equivalent

as the limits of the dimensionless ratios are the same. The resulting

response functions can be considered to be correlators of a quantum

�eld theory, which is now associated with a Hamiltonian de�ned in the

continuum, and has no intrinsic short distance or high energy cuto�.

A quantum �eld theory shares many of the characteristics of ordinary

quantum mechanics, with a unitary time evolution operator de�ned by

the continuum Hamiltonian, except that it has an in�nite number of

degrees of freedom per unit volume.
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The physical utility of the quantum �eld theory relies mainly on its

universality . As we have sent �!1 and J !1, it appears plausible

that changes in the structure of H(g) at the lattice scale will not mod-

ify the nature of the quantum �eld theory which eventually appears,

and the only consequence is a change in the values of the dimension-

ful parameters � and � (this change happens due to modi�cations of

the prefactors in (1.1) and (1.2), which, as we have already asserted, are

non-universal). A general rule of thumb is that only essential qualitative

features, like the symmetry of the order parameter, the dimensionality

of space, and constraints placed by conservation laws survive the con-

tinuum limit, and the structure of the quantum �eld theory is severely

constrained by these restrictions.

We have argued above that every second order quantum phase tran-

sition de�nes a quantum �eld theory in the continuum. Our attack on

the quantum phase transition problem in this book can be considered

as consisting of two essential steps. First we understand and classify

the various quantum �eld theories that can arise out of quantum phase

transitions in lattice Hamiltonians of physical interest. And second, we

describe the dynamical properties of these quantum �eld theories at �-

nite temperatures. The latter will then model the universal properties of

the physical lattice Hamiltonians in the vicinity of the quantum critical

point.

We can now answer the basic question: what are the quantum �eld

theories associated with the second order quantum phase transitions in

the quantum rotor model H

R

in (1.23) and the quantum Ising model

H

I

in (1.5) ? It is possible to give a common treatment of H

I

and H

R

,

with H

I

simply being the N = 1 case of a general discussion for H

R

.

We attempt to write down a Feynman path integral for the partition

function (we will explicitly include factors of �h and k

B

in the remainder

of this chapter)

Z = Tr exp

�

�

H

R;I

k

B

T

�

; (3.9)

essentially by following the inverse of the mapping discussed in Chap-

ter 2. This is expressed in terms of a functional integral over all possible

time histories (the `sum over histories' formulation of quantum mechan-

ics) of the rotor co-ordinate n(�) over an imaginary time 0 � � � �h=k

B

T

(and similarly for �

z

i

for N = 1). If we think of this time axis as the

one-dimensional axis of the classical models studied in Chapter 2, then

this functional integral over time is simply the partition function of the
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classical chain|we saw how to evaluate these in Chapter 2. The �nal

quantum �eld theory is conveniently expressed in terms of a coarse-

grained �eld �

�

(x; �) de�ned by

�

�

(x; �) �

X

i2N (x)

n

i�

(�) (3.10)

where x is a point in d-dimensional space, N (x) is a coarse-graining

neighborhood of x, the index � = 1 : : :N , and the overall normalization

of �

�

can be chosen at our convenience. For the case N = 1, we simply

replace n

i�

by �

z

i

. Because the n

i

can point in di�erent directions at

each i, the magnitude of �

�

can vary over a wide range. Indeed, it seems

reasonable that instead of placing a \hard" constraint like n

2

i

= 1, we

can view �

�

as a \soft" spin whose magnitude can vary freely over all

positive values. A remnant of the hard constraint on the microscopic

degrees of freedom is that we have a local e�ective potential V (�

2

�

)

which controls 
uctuations of �

2

�

, and prevents it from becoming too

large. We can also make a polynomial expansion for V , and it turns out

to be adequate to truncate it at terms of order (�

2

�

)

2

. In this manner,

the quantum �eld theory obtained by considering the vicinity of the

quantum critical points in H

R;I

is de�ned by the following imaginary

time Feynman path integral over all possible time histories of the �eld

�

�

(x; �) for the partition function Z :

Z =

Z

D�

�

(x; �) exp(�S

�

)

S

�

=

Z

d

d

x

Z

�h=k

B

T

0

d�

�

1

2

�

(@

�

�

�

)

2

+ c

2

(r

x

�

�

)

2

+ r�

2

�

(x)

�

+

u

4!

(�

2

�

(x))

2

o

; (3.11)

where c is a velocity, r and u are coupling constants, and the functional

integral is over �elds which are periodic in � with period �h=k

B

T , i.e.,

�

�

(x; �) = �

�

(x; �+�h=k

B

T ). The two non-gradient terms in (3.11) arise

from the polynomial expansion of the potential V (�

2

�

) noted above, the

spatial gradient term represents the energy cost for the spatial variations

in the orientation of the magnetic order. The time derivative term arises

from the quantum-mechanical tunneling terms proportional to Jg (Jeg)

in H

I

(H

R

), and we saw how they led to second-order time derivatives

in Chapter 2. This quantum �eld theory undergoes a quantum phase

transition by tuning the coupling r through a critical value r

c

at T = 0.

An alternative formulation of this quantum �eld theory is sometimes
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useful for analyzing H

R

at small eg and for low values of d; this formula-

tion applies only for N � 2 and yields a �eld theory with precisely the

same universal properties as the formulation in (3.11). The basic idea

is that at small eg, the predominant 
uctuations will be variations in the

orientation of the local direction of n

i

. Also the orientation should not

vary signi�cantly from site to site, and we can therefore simply promote

n

i

(�) to a unit length continuum �eld n(x; �) and obtain

Z =

Z

Dn(x; �)�(n

2

(x; �) � 1) exp(�S

n

)

S

n

=

N

2cg

Z

d

d

x

Z

�h=k

B

T

0

d�

h

(@

�

n)

2

+ c

2

(r

x

n)

2

i

; (3.12)

where the small eg expressions for g and c are given in (5.14) and (5.17),

and n(x; �) satis�es a periodicity condition similar to that for �

�

. This

�eld theory is often called the O(N) quantum non-linear sigma model in

d dimensions, for obscure historical reasons. The action is only quadratic

in the �eld n(x; �), but the model is not a free �eld theory because of

the constraint n

2

(x; �) = 1 which is imposed at each point in spacetime.

Note also that (3.12) is the obvious higher dimensional generalization of

theD = 1 �eld theory (2.68) studied in Chapter 2: instead of having only

one `quantum' � directions, we also have d additional spatial directions

labeled by x, along with the corresponding gradient squared term in the

action.

The description of the universal dynamical properties of (3.11) and

(3.12) will occupy a substantial portion of Part 2.

The �eld theories (3.11) and (3.12) can, of course, be obtained di-

rectly from the classical models (3.2) (3.3) in, perhaps, a somewhat

more transparent manner. For example, by taking the naive continuum

limit of (3.3), we directly obtain (3.12), where � is now interpreted as

one of the D spatial dimensions. Similar arguments can be made for

(3.11), by motivating the introduction of `soft' spins, as below (3.10).

As we have mentioned earlier, notice that if we began with a classical

model which was of in�nite extent in all D dimensions, the resulting in-

tegral over � in (3.11) and (3.12) would extend over an in�nite range of

�|such classical models therefore map onto quantum systems at T = 0.

To obtain quantum mechanics at �nite temperature, consider models

(3.2) and (3.3) in a particular `slab' geometry. The slab is of in�nite

extent in d = D� 1 dimensions, but has a �nite \length", L

�

, along the
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temporal direction given by

L

�

=

�h

k

B

T

: (3.13)

The classical �elds obey periodic boundary conditions in this �nite di-

rection. Note that L

�

has the units of physical time: the time L

�

shall

play a fundamental role in the dynamics of the quantum system near

its critical point. So to reiterate, the imaginary time correlations of an

in�nite d-dimensional quantum system at a temperature T are simply

related to the correlations of D-dimensional classical system which is

in�nite in d directions and of �nite extent L

�

in one direction.

3.2 What's di�erent about quantum transitions ?

The quantum-classical mapping discussed so far in Part 1 is in fact a

very general result, and not a speci�c property of the Ising/rotor mod-

els. One can always reinterpret the imaginary time functional integral of

a d-dimensional quantum �eld theory as the �nite `temperature' Gibbs

ensemble of a D-dimensional classical �eld theory. We will often use this

mapping between d-dimensional quantum mechanics and D-dimensional

classical statistical mechanics, and refer to it as the QC mapping. How-

ever, in general, the resulting classical statistical mechanics problem will

not be as simple as it was for the Ising/rotor models. Quantum critical

points often have z 6= 1, and so correlators of the classical problem will

scale di�erently along the x and � directions. Furthermore, as we note

below, there is no guarantee that the Gibbs weights are positive, and

they could even be complex-valued.

Given this simple, and ubiquitous, quantum-classical mapping QC,

one can now legitimately raise the question: \Why does one need a sep-

arate theory of quantum phase transitions ? Is it not possible to simply

lift results from the corresponding classical theory, and obtain all needed

properties of the quantum system ?" The answer to the second question

is an emphatic \no", and a direct treatment of the quantum problems

is certainly needed. The reasons for this should become clearer to the

reader as she proceeds through the book, but we note some important

points here:

� Note that the quantum-classical mapping QC yields quantum corre-

lation functions which are in imaginary time. The most interesting

properties of the quantum critical point are often related to their real

time dynamics, like their energy spectra, inelastic neutron scattering
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cross sections, or relaxation rates as measured in NMR experiments.

To obtain these, one needs to analytically continue the imaginary time

results to real time. The crucial point is that this analytic continuation

is an ill-posed problem, i.e., it is possible to continue exact imaginary

time results to real time, but anything short of an exact result leads

to unreliable, and usually unphysical results. In particular, existing

analytic results in the theory of classical critical phenomena (with the

exception of a single exact result in two spatial dimensions we shall

consider in Chapter 4) are totally inadequate for obtaining T > 0 dy-

namic properties of the corresponding quantum critical points. The

problem is particularly severe for the long time limit t � �h=k

B

T

which is usually of the greatest practical interest: these correlations

are essentially impossible to reconstruct from the equivalent classical

problem, which only yields imaginary time correlations in the domain

0 � � � �h=k

B

T . It is therefore of crucial importance that theory be

constructed using the physical concepts of the quantum critical point,

and that it formulate the dynamic analysis directly in real time at all

stages.

� We will see in the following chapters that a fundamental new time scale

characterizing the dynamic properties of systems near a quantum-

critical point is the phase coherence time, �

'

. Loosely speaking, �

'

is

the time over which the wavefunction of the many body system retains

memory of its phase. Local measurements separated by times shorter

than �

'

will display quantum interference e�ects. Precise de�nitions

of �

'

have to be tailored to the physical situation at hand, and these

will be presented later for the models and regimes considered. The

phase coherence time has no analog near the corresponding classical

critical point in D dimensions. Notice from (3.13), that an in�nite

D-dimensional classical system maps onto a d-dimensional quantum

system at T = 0; in all the models we shall consider in this book, the

latter will have either a unique ground state, or one with a degeneracy

small enough that the entropy is not thermodynamically signi�cant:

under these circumstances we can expect that it always possible to

de�ne a �

'

which is in�nite at T = 0, and therefore the quantum

system has perfect phase coherence at su�ciently low temperatures.

From the in�nite D-dimensional classical point of view, however, this

result may seem extremely peculiar: most such systems have a high

`temperature' disordered phase in which there is no long-range order

and all correlations decay exponentially over very short scales. Yet

we are claiming that such a disordered state maps onto a correspond-
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ing `quantum-disordered' state which is characterized by correlations

which have an in�nite correlation time (for related remarks from ex-

perimentalists' perspectives, the reader should see the recent articles

by Mason et al. [327] and Aeppli et al. [1]); for this reason we shall

eschew the commonly used `quantum-disordered' appellation, and re-

fer to this state, as noted earlier, as a quantum paramagnet . This

peculiarity is closely related to the ill-posed nature of the analytic

continuation which was noted above. Quantum systems at T = 0

really do have a genuinely di�erent long-range phase correlation in

time which is almost completely hidden once the mapping to imagi-

nary time and the corresponding classical system has been performed.

Only for T > 0 does the �

'

of the quantum system become �nite. An

important purpose of this book shall be to show how to introduce

a characterization of quantum states which demonstrates the perfect

coherence at T = 0, how to compute �

'

for T > 0, and to highlight

the crucial role played by �

'

in the structure of the dynamic correla-

tions. The manner in which �

'

!1 as T ! 0 shall be an important

diagnostic in characterizing in the di�erent T > 0 regions in vicinity

of the quantum critical point: we shall �nd that, in all of the models

we shall study, the time L

�

in (3.13) appears as a lower bound on �

'

on the rate of divergence of �

'

as T ! 0, i.e.,

�

'

� C

�h

k

B

T

as T ! 0; (3.14)

where C is a number of order unity. Certain models will have regions

in which the inequality in (3.14) is saturated: these regions will be of

particular interest to us. Their dynamical properties have not been

studied until recently, and we will �nd that they have many remark-

ably universal characteristics even though their saturating the lower

bound on �

'

implies that their physics is maximally incoherent.

� For a large class of interesting, physically relevant quantum critical

points, the corresponding classical critical points are rather arti�cial

and not of a class that have been studied earlier. In random systems,

the classical problems have disorder which is in�nitely correlated along

the imaginary time direction. Moreover, even in non-random systems,

the classical problems often have complex-valued Boltzmann weights.

These complex weights are clearly a consequence of the underlying

quantum mechanics, and are often best understood as \Berry phase"

factors ( see Ref [456] for an elementary introduction to Berry phases;

the Berry phases are complex even in imaginary time). We will study
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quantum critical points of these types in Part 3 of this book. We will

see that a whole new class of phenomena are then possible, which have

no analogs in the classical theory.

� Even for those quantum critical points which do have well studied

classical analogs, note that we need the classical correlation functions

in a rather curious slab geometry: one which is in�nite in D � 1 di-

mensions and of �nite length L

�

in one directions. There are very few

existing results in such a geometry, and one often has to reconstruct

the needed correlators from scratch.

Despite these caveats, it should be evident that it will pay to push

the quantum-classical mapping QC to the extent possible: this will al-

low us to get maximum mileage from the sophisticated and profound

developments in the theory of classical critical phenomena. This shall

be the strategy of this book. We will begin in Part 2 by thoroughly ex-

amining a class of quantum phase transitions which do have simple and

well-studied classical analogs. In this manner, we will introduce many of

the central concepts needed in a somewhat more familiar environment.

Then, as noted above, we will proceed in Part 3 to many other physically

important quantum phase transitions which involve Berry phases in a

crucial way, and which do not have useful classical analogs.

There have also been discussions of the dynamical properties of quan-

tum �eld theories at �nite temperature in the particle physics litera-

ture [263, 56, 249, 386]. However, these are exclusively concerned with

physics in D = 4 in models that do not satisfy `hyperscaling' [63] prop-

erties, and this leads to signi�cant di�erences from the systems we shall

examine here. Some of these studies [56, 249] have examined the model

S

�

in (3.11) for the case D = 4, N = 1, which turns out to be essen-

tially a free �eld theory at low energies: as a result inelastic, decoher-

ence e�ects are rather weak and non-universal. This will be discussed

further in Chapter 8. There is also interest in the high temperature

dynamical properties of non-Abelian gauge theories [249, 386]: these are

asymptotically free at high energies, (i.e., scattering between the ele-

mentary excitations is negligibly small at high energies), and as a result

the high temperature behavior is controlled by a Gaussian and classical

�xed point. We will see an analogous phenomenon here in a much sim-

pler context in Section 6.3; the simplicity will allow us to make greater

progress than has so far been possible for the gauge theories. The models

of primary interest in this book satisfy hyperscaling and are not asymp-
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totically free at high energies: such models have not been studied in the

particle physics literature.



Part two

Quantum Ising and Rotor Models





4

The Ising chain in a transverse �eld

This chapter will describe in considerable detail the quantum critical

properties of the quantum N = 1 model in one spatial dimension. All

of the results in this section are believed to be exact, but the physically

oriented reader should not be turned o� by this: we will keep technical

details to a minimum, and show how the exact results can be obtained

by physical arguments which do much to illustrate the main underlying

principles. Most of the important concepts of this book will appear in the

simple model under consideration: the remainder of the book is largely

a description of similar phenomena in more complicated settings. This

is thus one of the central chapters of this book, and a careful reading is

urged.

We will study the D = 1 case of (1.5) which is

H

I

= �J

X

i

�

g�̂

x

i

+ �̂

z

i

�̂

z

i+1

�

: (4.1)

As we have discussed in Part 1 and will establish in this chapter, H

I

exhibits a phase transition at T = 0 between an ordered state with

the Z

2

symmetry broken, and a quantum paramagnetic state where

the symmetry remains unbroken. The quantum-classical mapping QC

ensures that this transition will be in the universality class of the D = 2

classical Ising model.

There has been a great deal of theoretical work on the ground state

correlations of H

I

[306, 382, 336, 35]. However, properties of the or-

der parameter �̂

z

at T > 0, which are our primary interest here, have

been studied much less: methods relying upon knowledge of all the ex-

act eigenstates and eigenfunctions of H

I

do yield explicit results for

equal-time correlators [306, 333, 38, 425], but results for unequal-time

correlators have been restricted to T = 1 [71, 380, 381] or to precisely

51
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the critical coupling [337, 245] (seen below to be g = 1). There is also an

approach which relies upon deriving non-linear partial di�erential equa-

tions satis�ed by the T > 0 unequal time correlators [338, 281, 297]

but these have not so far been solved to yield the physical correla-

tors. Our discussion of the low T dynamics here will follow the intuitive

phenomenological approach developed recently in Ref [442]: despite its

seeming inexactness, its results are believed to be asymptotically exact,

and this will be supported by evidence from numerical computations.

We will use our discussion of the quantum critical point of H

I

and its

vicinity to introduce some basic concepts and tools. These include the

central idea of a scaling transformation to characterize the scaling limit

theory of the quantum critical point, the scaling dimension of opera-

tors and coupling constants about the critical theory, and the dynamic

critical exponent z. Another very useful, but much less familiar con-

cept, is that of the reduced scaling function, and it will be introduced as

an essential tool towards understanding the mechanism of emergence of

classical behavior in limiting regimes of the phase diagram.

We will describe the properties of H

I

by focusing on an especially

important observable: the dynamic two-point correlations of the order

parameter �̂

z

(as discussed in Section 3.1, correlators of the �eld � in

(3.11) will be similar to those of �̂

z

)

C(x

i

; t) � h�̂

z

(x

i

; t)�̂

z

(0; 0)i

= Tr

�

e

�H

I

=T

e

iH

I

t

�̂

z

i

e

�iH

I

t

�̂

z

0

�

=Z (4.2)

where Z = Tr(e

�H

I

=T

) is the partition function, and x

i

= ia is the x-

coordinate of the i'th spins with a the lattice spacing. Here, and in the

remainder of this book, we will always use the symbol t to represent real

physical time. Occasionally we will also �nd it convenient to consider

the correlation at an imaginary time � ; this is de�ned by the analytic

continuation it! � from (4.2) with � > 0

C(x

i

; �) = Tr

�

e

�H

I

=T

e

H

I

�

�̂

z

i

e

�H

I

�

�̂

z

0

�

=Z : (4.3)

Compare this de�nition with (2.30); from the discussion in Chapter 2 it

should be clear that C(x; �) is the correlator of the classical D = 2 Ising

model (3.2) on an in�nite strip of width 1=T and periodic boundary

conditions along the `imaginary time' direction. In all our subsequent

discussion on the correlators like C, we will consistently use the argument

t when referring to real time correlators as in (4.2), and the argument

� for imaginary time correlators as in (4.3). We will also deal with the
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dynamic structure factor , S(k; !), which is simply the Fourier transform

of C(x; t) to wavevectors and frequencies

S(k; !) =

Z

dx

Z

dtC(x; t)e

�i(kx�!t)

: (4.4)

This is a useful quantity because it is directly proportional to the cross

section in scattering experiments in which the probe (usually neutrons)

couples to �

z

. If energy of the scattered neutron is integrated over, then

the cross section in proportional to the equal-time structure factor, S(k),

de�ned by

S(k) �

Z

d!

2�

S(k; !); (4.5)

which is clearly also the spatial Fourier transform of C(x; 0). The num-

ber of arguments of S will specify whether we are referring to the dy-

namic or equal-time structure factor. The identity (�̂

z

i

)

2

= 1 implies

that C(0; 0) = 1, and leads to the following sum rule for the dynamic

structure factor

Z

dkd!

(2�)

2

S(k; !) = 1: (4.6)

Finally, also useful is the corresponding dynamic susceptibility �(k; !

n

)

which is most conveniently de�ned by a Fourier transform in imaginary

time

�(k; !

n

) �

Z

1=T

0

d�

Z

dxC(x; �)e

�i(kx�!

n

�)

(4.7)

where !

n

= 2�nT , n integer, is the usual Matsubara imaginary fre-

quency arising from the restriction to periodic functions along the imag-

inary time direction. We may also perform the analytic continuation to

real frequencies by i!

n

! !+ i� (where � is a positive in�nitesimal) and

obtain the dynamic susceptibility, �(k; !). As was the case for C, it will

be symbol for the frequency (!

n

or !) which will distinguish whether

we are referring to the imaginary or real frequency susceptibility. The

dynamic susceptibility measures the response of the magnetization �

z

to an external �eld which couples linearly to �

z

and is oscillating at

a wavevector k and frequency !. In the limit that the external �eld

becomes time-independent, the response is given by the static suscepti-

bility, �(k) de�ned by

�(k) � �(k; ! = 0): (4.8)



54 The Ising chain in a transverse �eld

Again, the number of arguments of � will specify whether we are refer-

ring to the dynamic or static susceptibility.

From (4.2), (4.3), (4.4) and (4.7) it is clear that there should be a rela-

tionship between the two real frequency correlators S(k; !) and �(k; !).

This is the so-called 
uctuation-dissipation theorem, and is established

by expressing all the above correlators in terms of the (possibly un-

known) exact eigenstates of H

I

and their matrix elements; such an anal-

ysis may be found in many text books, and we will not reproduce it here

(see, e.g., Ref. [146]). It is conventional to decompose �(k; !) into its

real and imaginary parts by �(k; !) = Re�(k; !) + iIm�(k; !), and the

required relationship is then

S(k; !) =

2

1� e

�!=T

Im�(k; !): (4.9)

A Kramers-Kronig transform also connects the real and imaginary parts

of �(k; !):

Re�(k; !) = P

Z

1

�1

d


�

Im�(k;
)


� !

; (4.10)

where P labels the principal part. The spectral analysis also shows that

Im�(k; !) is an odd function of !, while Re�(k; !) is an even function

of !. From (4.9), the dynamic structure factor satis�es S(k;�!) =

e

�!=T

S(k; !).

We will begin this chapter by developing a simple physical picture of

the possible ground and excited states of H

I

by examining the large and

small g limits in Section 4.1. The exact spectrum will be determined in

Section 4.2 and this will show the existence of a quantum critical point

at g = 1. The universal continuum quantum theory of the vicinity of

g = 1 will be obtained in Section 4.3. Equal time correlators for T > 0

will be discussed in Section 4.4, and the dynamical properties of the

di�erent T > 0 regimes will be examined in Section 4.5.

We note that the reader may also wish to examine the recent book

by Chakrabarti, Dutta and Sen [82] which discusses aspects of quantum

Ising models in one and higher dimensions.

4.1 Limiting cases at T = 0

We begin by examining the spectrum of H

I

under strong (g � 1)

and weak (g � 1) coupling limits, which were discussed brie
y in Sec-

tion 1.4.1. The analysis is relatively straightforward in these limits, and

two very di�erent physical pictures emerge. The exact solution, to be
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discussed later, shows that there is a critical point exactly at g = 1, but

that the qualitative properties of the ground states for g > 1 (g < 1)

are very similar to those for g � 1 (g � 1). One of the two limiting

descriptions is therefore always appropriate, and only the critical point

g = 1 has genuinely di�erent properties at T = 0.

4.1.1 Strong coupling g � 1

The g =1 ground state was presented in (1.7), where we also discussed

the nature of the 1=g corrections. We found a quantum paramagnetic

ground state, invariant under the Z

2

symmetry (1.11), with exponen-

tially decaying �̂

z

correlations as in (1.9).

What about the excited states ? For g = 1 these can also be listed

exactly. The lowest excited states are

jii = j  i

i

Y

j 6=i

j !i

j

; (4.11)

obtained by 
ipping the state on site i to the other eigenstate of �̂

x

(the

eigenstates of �̂

x

were de�ned in (1.8)). All such states are degenerate,

and we will refer to them as the \single-particle" states. Similarly, the

next degenerate manifold of states are the two-particle states ji; ji, ob-

tained by 
ipping the states at sites i and j, and so on to the general

n-particle states. To �rst order in 1=g, we can neglect the mixing be-

tween states between di�erent particle number, and just study how the

degeneracy within each manifold is lifted. For the one-particle states,

the exchange term �̂

z

i

�̂

z

i+1

in H

I

is not diagonal in the basis of the j !i,

j  i states, and leads only to the o�-diagonal matrix element

hijH

I

ji+ 1i = �J (4.12)

which hops the `particle' between nearest neighbor sites. As in the tight-

binding models of solid state physics [27], the Hamiltonian is therefore

diagonalized by going to the momentum space basis

jki =

1

p

N

X

j

e

ikx

j

jji; (4.13)

where N is the number of sites. This eigenstate has energy (we have

added an overall constant to H

I

to make the energy of the ground state

zero)

"

k

= Jg

�

2� (2=g) cos(ka) +O(1=g

2

);

�

(4.14)
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where a is the lattice spacing. The lowest energy one-particle state is

therefore at "

0

= 2g � 2J

Now consider the two particle states. At g =1, the subspace of two

particle states is spanned by the states (generalizing (4.11))

ji; ji = j  i

i

j  i

j

Y

h 6=i;j

j !i

h

; (4.15)

where i 6= j. Also notice that ji; ji = jj; ii, and so we may restrict

our attention to i > j. Alternatively, we can say that the states are

symmetric under interchange of the particle positions i; j and so we

treat the particles as bosons. At �rst order in 1=g, these states will be

mixed by the matrix element (4.12); this will couple ji; ji to ji�1; ji and

i; j � 1i for all i > j + 1, while ji; i� 1i will couple only to ji+ 1; i� 1i

and ji; i � 2i. For i and j well separated, we can ignore this last case,

and the two particles will be independent of each other, with the matrix

elements for each particle identical to those considered above for single

particles. So the particles will acquire momenta k

1

, k

2

(say), and the

total energy of the two particle state will be E

k

= "

k

+ "

0

k

, and its

total momentum k = k

1

+ k

2

. However, when i and j approach each

other, we will have to consider mixing between these momentum states

arising from the restrictions in the matrix elements noted above. This

is a problem in ordinary scattering theory, treated in many elementary

quantum mechanics texts. (In this discussion, we are assuming that

there are no two-particle bound states, a fact that can be veri�ed by

a full solution of the two-particle Schr�odinger equation at order 1=g.)

The scattering of the two incoming particles with momenta k

1

, k

2

will

conserve total energy, and total momentum up to a reciprocal lattice

vector. For small k

1

, k

2

(which is our primary interest here), these

conservation laws allow only one solution in d = 1: the momenta of

the particles in the �nal state are also k

1

and k

2

. The existence of

a single �nal state is a special feature of d = 1, while a sum over an

in�nite number of momenta in the �nal state is required for the problems

in d > 1 we will consider later. By this reasoning, we can conclude

that the wavefunction of the two particle state will have the following

wavefunction for i� j

�

e

i(k

1

x

i

+k

2

x

j

)

+ S

k

1

k

2

e

i(k

2

x

i

+k

1

x

j

)

�

ji; ji: (4.16)

The quantity S

k

1

k

2

is of central importance, and is the S matrix for two

particle scattering. Upon interpreting the stationary scattering state in

(4.16) from the perspective of a time-dependent scattering problem, in
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which particles scatter from an incoming wave corresponding to the �rst

term in (4.16), to an outgoing wave corresponding to the second term,

the S matrix can be related (just as in familiar scattering theory) to the

time-evolution operator ofH

I

from the in�nite past to the in�nite future,

and must therefore be a unitary matrix. In the present situation with

a single �nal state, the S matrix is a complex number of unit modulus.

The reader is urged to go through the simple exercise of computing the

S matrix from the Schr�odinger equation at order 1=g. The result turns

out to be remarkably simple; we �nd

S

k

1

k

2

= �1; (4.17)

for all momenta k

1

, k

2

. We will not give an explicit derivation of this

result here (a detailed discussion of the computation of such S matrices

in general spin models may be found in Ref [117]). Instead, will present

a simple argument in the next paragraph which shows that a result like

(4.17) holds in the limit of small k

1

, k

2

for a generic Ising chain with

additional further neighbor exchange couplings; the validity of (4.17) at

all momenta is a special feature of the nearest neighbor exchange model

(4.1). Our argument will also show that (4.17) continues to hold at

higher orders in 1=g for small k

1

, k

2

.

Transform to the center of mass frame of the two particles, and con-

sider the Schr�odinger equation for their relative co-ordinates x = x

i

�x

j

.

Taking for simplicity, a repulsive delta function potential u�(x) between

them (the result does not require this special form), we can write down

the schematic Schr�odinger equation

�

�

d

2

dx

2

+ u�(x)

�

 (x) = E (x); (4.18)

where x is their relative co-ordinate and  (x) is the wavefunction in

the center of mass frame. We make a simple argument based upon

dimensional analysis. Notice from (4.18) that u has the dimensions of an

inverse length. The S matrix is a dimensionless quantity, and can only be

a function of u and the relative momentum k = k

1

� k

2

. Dimensionally,

this can only be of the form S = f(u=k) where f is some unknown

function. We are interested in the limit k ! 0, which is given by the

value of f(1). However, conceptually, it is much simpler to obtain f(1)

by taking u!1 at �xed k. So to slowly moving particles, the potential

appears e�ectively impenetrable. This means that  (x) should vanish

at x = 0, and its bosonic symmetry under particle exchange implies that

it has the form  � sin(kjxj=2) for small x. Comparing with (4.16), we
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conclude that f(1) = �1, and so (4.17) holds universally in the limit

of small momenta.

We have now described the manner in which 1=g perturbations lift the

degeneracy of the g =1 two particle eigenstates (4.15). The energy of

a two-particle state with total momentum k is given by E

k

= "

k

1

+ "

k

2

where k = k

1

+k

2

. Notice that for a �xed k, there is still an arbitrariness

in the single particle momenta k

1;2

and so the total energy E

k

can take

a range of values. There is thus no de�nite energy momentum relation,

and we have instead a `two-particle continuum'. It should be clear,

however, that the lowest energy two-particle state in the in�nite system

(its \threshold") is at 2"

0

. Similar considerations apply to the n-particle

continua, which have thresholds at n"

0

.

At higher orders in 1=g we have to account for the mixing between

states with di�ering numbers of particles. Non-zero matrix elements like

h0jH

I

ji; i+ 1i = �J (4.19)

lead to a coupling between n and n + 2 particle states. It is clear that

these will renormalize the one-particle energies "

k

. However qualitative

features of the spectrum will not change, and we will still have renormal-

ized one-particle states with a de�nite energy-momentum relationship,

and renormalized n � 2 particle continua with thresholds at n"

0

. Note

especially that the integrity and stability of the one particle states is not

modi�ed at any order in 1=g: the one particle state with energy "

k

is

the lowest energy state with a momentum k, and this protects it from

decay.

Upon explicitly carrying out these higher order computations for the

particular nearest neighbor model H

I

, some rather `miraculous' features

emerge for this special Hamiltonian: as already noted, the result (4.17)

holds not only at small k

1

, k

2

, but at all momenta and at all orders

in 1=g (there are also no processes in which the number of outgoing

particles does not equal the number of in-going ones). This remarkable

fact appears quite mysterious at this stage, but will be explained rather

simply in Section 4.2 using a mapping of H

I

to fermionic variables.

The spectrum described above has important consequences for the

dynamic structure factor S(k; !). Inserting a complete sets of states

between the operators in the de�nition (4.4) we see that T = 0

S(k; !) = 2�

X

s

j h0j�̂

z

(k)jsi j

2

�(! �E

s

); (4.20)

where the sum over s extends over all the eigenstates of H

I

with en-
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ωεk

Fig. 4.1. Schematic of the dynamic structure factor S(k; !) of H

I

as a function

of ! at T = 0 and a small k. There is a quasiparticle delta function at ! = "

k

,

and a three-particle continuum at higher frequencies. There are additional

n-particle continua (n � 5 and odd) at higher energies which are not shown.

ergy E

s

> 0, and so at T = 0, S(k; !) is non-zero only for ! > 0

(recall that we have chosen the ground state energy to be zero). The dy-

namic susceptibility can be obtained from (4.9), and equals Im�(k; !) =

(sgn(!)=2)S(k; j!j). The eigenstates and energies described above allow

us to simply deduce the qualitative form of S(k; !) which is sketched

in Fig 4.1. The operator �̂

z


ips the state at a single site, and so the

matrix element in (4.20) is non-zero for the single particle states: only

the state with momentum k will contribute, and so there is an in�nitely

sharp delta function contribution to S(k; !) � �(! � "

k

). This delta

function is the \quasiparticle peak" and its co-e�cient is the quasipar-

ticle amplitude. At g =1 this quasiparticle peak is the entire spectral

density which saturates the sum rule in (4.6), but for smaller g the quasi-

particle amplitude decreases and the multiparticle states also contribute

to the spectral density. The mixing between the one and three parti-

cle states discussed above, means that the next contribution to S(k; !)

occurs above the 3 particle threshold ! > 3"

0

; because there are a con-

tinuum of such states, their contribution is no longer a delta function,

but a smooth function of omega (apart from a threshold singularity), as

shown in Fig 4.1. Similarly there are continua above higher odd number

particle thresholds; only states with odd numbers of particles contribute

because the matrix element in (4.20) vanishes for even numbers of par-

ticles.
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4.1.2 Weak coupling g � 1

The g = 0 ground states were given in (1.10). They are two-fold degener-

ate, and posses long range correlations in the magnetic order parameter

�̂

z

. In the present notation, the result (1.12) implies

lim

jxj!1

C(x; 0) = N

2

0

6= 0; (4.21)

where C(x; t) was de�ned in (4.2). The spontaneous magnetization N

0

equals �h�̂

z

i in the two ground states, corresponding to spontaneous

breaking of the Z

2

symmetry (1.11). All of the statements made in this

paragraph clearly hold for g = 0, and will hold for some g > 0 provided

the perturbation theory in g has a non-zero radius of convergence. The

exact solution of the model to be discussed later will verify that this is

indeed the case.

The excited states can be described in terms of an elementary domain

wall (or kink) excitation. For instance the state

� � � j"i

i

j"i

i+1

j#i

i+2

j#i

i+3

j#i

i+4

j"i

i+5

j"i

i+6

� � �

has domain walls, or nearest neighbor pairs of antiparallel spins, between

sites i + 1, i + 2 and sites i + 4, i + 5. At g = 0 the energy of such a

state is clearly 2J�number of domain walls. The consequences of a

small non-zero g are very similar to those due to 1=g corrections in the

complementary large g limit: the domain walls become \particles" which

can hop and form momentum eigenstates with excitation energy

"

k

= J

�

2� 2g cos(ka) +O(g

2

)

�

: (4.22)

The spectrum can be interpreted in terms n-particle scattering states,

although it must be emphasized that the interpretation of the particle

is very di�erent from that in the large g limit. Again, the perturbation

theory in g only mixes states which di�er by even numbers of particles,

although the matrix element in (4.20) is non-zero only for states s with

an even number of particles; these assertions can easily be checked to

hold in a perturbation theory in g. The structure factor S(k; !) will

have a delta function at k = 0, ! = 0, from the term in (4.20) where s =

one of the ground states, indicating the presence of long-range order.

Further, there is no single particle contribution, and the �rst �nite !

spectral density is the continuum above the two particle threshold. So

S(k; !) = (2�)

2

N

2

0

�(k)�(!) + continua of even numbers of particles.

(4.23)

The absence of a single particle delta function is a special feature of
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the d = 1 quantum Ising model, and is a consequence of the topolog-

ical domain-wall nature of the excitations, in which all of the spins to

the left (say) of a wall have to be 
ipped relative to the magnetically

ordered state|so any local operator will not have a non-zero matrix

element between states di�ering by an odd number of domain walls. It

is not di�cult to show [427] (using methods developed in Chapter 8)

that d > 1 Ising models have a single-particle delta function in their dy-

namic structure function for both the magnetically ordered and quantum

paramagnetic states.

The S matrix for the collision of two domain walls can be computed

in a perturbation theory in g, and we �nd results very similar to those

in the strong-coupling 1=g expansion: for the generic Ising chain we �nd

S

kk

0

= �1 in the low momentum limit, but for the particular nearest-

neighbor chain (4.1) we �nd that there is no particle production, and

S

kk

0

= �1 at all momenta to all orders in g.

4.2 Exact spectrum

The qualitative considerations of the previous section are quite useful

in developing an intuitive physical picture. We will now take a di�er-

ent route, and set up a formalism that will eventually lead to an exact

determination of many physical correlators; these results will vindicate

the approximate methods for g > 1, g < 1, and also provide an under-

standing of the novel physics at g = 1.

The essential tool in the solution is the Jordan-Wigner transforma-

tion [254, 306]. This is a very powerful mapping between models with

spin-1/2 degrees of freedom and spinless fermions. The central obser-

vation is that there is a simple mapping between the Hilbert space of a

system with a spin-1/2 degree of freedom per site, and that of spinless

fermions hopping between sites with single orbitals. We may associate

the spin up state with an empty orbital on the site, and a spin-down state

with an occupied orbital. If the canonical fermion operator c

i

annihi-

lates a spinless fermion on site i, then this simple mapping immediately

implies the operator relation

�̂

z

i

= 1� 2c

y

i

c

i

(4.24)

It is also clear that the operation of c

i

is equivalent to 
ipping the spin

from down to up, or the operation of �̂

+

i

= (�̂

x

i

+i�̂

y

i

)=2; similar creating

a fermion by c

y

i

is equivalent to lowering the spin by �̂

�

i

= (�̂

x

i

� i�̂

y

i

)=2.

While this equivalence works for a single site, we cannot yet equate
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the fermion operators with the corresponding spin operators for the

many site problem; this is because while two fermionic operators on

di�erent sites anticommute, two spin operators commute. The solu-

tion to this dilemma was found by Jordan and Wigner, who showed

that the following representation satis�ed both on-site and inter-site

(anti)commutation relations:

�̂

+

i

=

Y

j<i

�

1� 2c

y

j

c

j

�

c

i

�̂

�

i

=

Y

j<i

�

1� 2c

y

j

c

j

�

c

y

i

: (4.25)

The naive single-site correspondence has been modi�ed by a `string' of

operators, whose value is +1 (�1) if the total number of fermions on the

sites to the left of site i are even (odd). Notice that the spin operators

have a highly non-local representation in terms of the fermion operators.

This feature is also found in the inverse of (4.25)

c

i

=

0

@

Y

j<i

�̂

z

j

1

A

�̂

+

i

c

y

i

=

0

@

Y

j<i

�̂

z

j

1

A

�̂

�

i

: (4.26)

It can be veri�ed that (4.24,4.25,4.26) are consistent with the relations

n

c

i

; c

y

j

o

= �

ij

fc

i

; c

j

g =

n

c

y

i

; c

y

j

o

= 0

�

�̂

+

i

; �̂

�

j

�

= �

ij

�̂

z

i

�

�̂

z

i

; �̂

�

j

�

= �2�

ij

�̂

�

i

; (4.27)

where the curly brackets represent anticommutators, and square brack-

ets are commutators.

The above formulation of the Jordan-Wigner transformation is the

conventional one, but in the analysis of the Ising model it is convenient

to rotate spin axes by 90 degrees about the y axis so that

�̂

z

! �̂

x

; �̂

x

! ��̂

z

(4.28)

The mapping becomes

�̂

x

i

= 1� 2c

y

i

c

i

�̂

z

i

= �

Y

j<i

�

1� 2c

y

j

c

j

�

(c

i

+ c

y

i

): (4.29)
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Inserting (4.29) into H

I

, the resulting Hamiltonian is quadratic in the

Fermi operators

H

I

= �J

X

i

�

c

y

i

c

i+1

+ c

y

i+1

c

i

+ c

y

i

c

y

i+1

+ c

i+1

c

i

� 2gc

y

i

c

i

� g

�

(4.30)

This fermionic Hamiltonian has terms like c

y

c

y

which violate the fermion

conservation number; from (4.29), this means that

P

i

�̂

x

i

is not con-

served and j !i spins can be 
ipped in pairs under time evolution, as

we saw in the perturbation theory in Section 4.1.1. So the eigenstates of

H

I

will not have a de�nite fermion number. Nevertheless, the new terms

are still quadratic in the fermion operators, and H

I

can be diagonalized

by elementary means. First, use the momentum eigenstates

c

k

=

1

p

M

X

j

c

j

e

�ikr

j

; (4.31)

where M is the number of sites, to get

H

I

= J

X

k

�

2 [g � cos(ka)] c

y

k

c

k

� i sin(ka)

h

c

y

�k

c

y

k

+ c

�k

c

k

i

� g

�

(4.32)

Next, use the Bogoliubov transformation to map into a new set of

fermionic operators (


k

) whose number is conserved. These new op-

erators are de�ned by a unitary transformation on the pair c

k

; c

y

�k




k

= u

k

c

k

� iv

k

c

y

�k

; (4.33)

where u

k

, v

k

are real numbers satisfying u

2

k

+ v

2

k

= 1, u

�k

= u

k

, and

v

�k

= �v

k

. It can be checked that canonical fermion anticommutation

relations for the c

k

imply that the same relations are also satis�ed by

the 


k

, i.e.,

n




k

; 


y

k

0

o

= �

k;k

0

n




y

k

; 


y

k

0

o

= f


k

; 


k

0

g = 0: (4.34)

We also note the inverse of (4.33)

c

k

= u

k




k

+ iv

k




y

�k

(4.35)

We insert (4.35) into (4.32), and demand that H

I

not contain any terms

like 


y




y

which violate conservation of the 
 fermions. The as yet un-

de�ned constants, u

k

, v

k

can always be chosen to ensure this: we de�ne

u

k

= cos(�

k

=2), v

k

= sin(�

k

=2), and a simple calculation then shows

that the choice

tan �

k

=

sin(ka)

cos(ka)� g

(4.36)



64 The Ising chain in a transverse �eld

satis�es our requirements. The �nal form of H

I

is

H

I

=

X

k

"

k

(


y

k




k

� 1=2); (4.37)

where

"

k

= 2J

�

1 + g

2

� 2g cos k

�

1=2

: (4.38)

is the single particle energy. As "

k

� 0, the ground state, j0i, of H

I

has

no 
 fermions and therefore satis�es 


k

j0i = 0 for all k. The excited

states are created by occupying the single particle states; they can clearly

be classi�ed by the total number of occupied states, and a n-particle

state has the from 


y

k

1




y

k

2

� � � 


y

k

n

j0i, with all the k

i

distinct.

The above structure of the spectrum con�rms the approximate con-

siderations of Section 4.1. We have found that the particles are in fact

free fermions, and two fermions will not scatter even when they are close

to each other; alternatively they can be considered as hard-core bosons

which have an S matrix which does not allow particle production, and

which equals �1 at all momenta. We shall �nd it much more useful

to take the latter point of view, as the bosonic particles have a sim-

ple, local, interpretation in terms of the underlying spin excitations: for

g � 1 the bosons are simply spins oriented in the j  i direction, while

for g � 1 they are domain walls between the two ground states. The

fermionic representation is useful for certain technical manipulations,

but the bosonic point of view is much more useful for making physical

arguments, as we shall see below.

It is also reassuring to see that the exact single-particle excitation

energy (4.38) agrees with (4.14) in the limit g � 1, and with (4.22) in

the limit g � 1.

4.3 Continuum theory and scaling transformations

The excitation energy "

k

in (4.38) is non-zero and positive for all k

provided g 6= 1. The energy gap, or the minimum excitation energy,

is always at k = 0 and equals 2J j1 � gj. This gap vanishes at g = 1,

and it is natural to expect that g = 1 is the phase boundary between

the two qualitatively di�erent phases discussed in Section 4.1. Precisely

at g = 1, fermions with low momenta can carry arbitrarily low energy,

and therefore must dominate the low temperature properties. These

properties suggest that the state at g = 1 is critical, and there is a

universal continuum quantum �eld theory which describes the critical

properties in its vicinity.
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We shall now obtain this critical theory. As the important excitations

are near k = 0, we expect that a naive gradient expansion will yield the

required theory. We de�ne the continuum Fermi �eld

	(x

i

) =

1

p

a

c

i

(4.39)

where the normalization has been chosen so that 	 has units of inverse

square-root of length, and

�

	(x);	

y

(x

0

)

	

= �(x� x

0

); (4.40)

with the right hand side a Dirac delta function in the continuum limit.

We express H

I

in terms of 	, and expand in spatial gradients, to obtain

from (4.32) the continuum H

F

:

H

F

= E

0

+

Z

dx

�

c

2

�

	

y

@	

y

@x

�	

@	

@x

�

+�	

y

	

�

+ : : : (4.41)

where the ellipses represent terms with higher gradients, and E

0

is an

uninteresting additive constant. The coupling constants in H

F

are

� = 2J(1� g) c = 2Ja: (4.42)

Notice that at the critical point g = 1, we have � = 0, and we have

� > 0 in the magnetically ordered phase, and � < 0 in the quantum

paramagnet.

The continuum theory H

F

in (4.41) can be viewed as having been

obtained by replacing the dependence of the Hamiltonian on c

i

, J , and

g by 	, � and c, and then taking the limit a! 0 at �xed 	, � and c.

Notice from (4.42) that this limit requires J ! 1 and g ! 1. Notice

also the similarity to the discussion in Section 2.1.1.

It is convenient to perform our subsequent scaling analysis in a La-

grangean path integral representation of the dynamics of H

F

. Using the

standard Grassman path integral of canonical Fermi operators (see, e.g.,

the book by Negele and Orland [360] or the text by Shankar [456]) we

obtain for the partition function Z = Tre

�H

F

=T

Z =

Z

D	D	

y

exp

 

�

Z

1=T

0

d�dxL

I

!

(4.43)

where the functional integral is over complex Grassman �elds 	, 	

y

in

space (x) and imaginary time (�), and the Lagrangean density L

I

is

L

I

= 	

y

@	

@�

+

c

2

�

	

y

@	

y

@x

�	

@	

@x

�

+�	

y

	 (4.44)
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As we shall discuss in detail below, L

I

is the required universal crit-

ical theory characterizing the critical point in H

I

. In other words, if

we modi�ed the detailed form of H

I

, e.g., by including second neighbor

coupling, the critical theory would still be L

I

but with changes in the

value of � and c. In general, it is not possible to determine the exact

relationship between parameters characterizing the critical theory and

microscopic couplings, as presented in (4.42), since the resulting micro-

scopic Hamiltonian is not quadratic in Fermi �elds. We then leave � and

c as phenomenological parameters, to be determined by relating them

to a physically measurable observable. The continuum theory L

I

can be

diagonalized much like the lattice model H

I

, and the excitation energy

now takes a \relativistic" form

"

k

=

�

�

2

+ c

2

k

2

�

1=2

(4.45)

which shows that j�j is the T = 0 energy gap (we chose the sign of �

to be di�erent on the two sides of the critical value of g), and c is the

velocity of the excitations, both measurable quantities. The form of "

k

correctly suggests that L

I

is invariant under Lorentz transformations.

This can be made explicit by writing the complex Grassman �eld 	 in

terms of two real Grassman �elds, when the action becomes what is

known as the �eld theory of Majorana fermions of mass �=c

2

[247]; we

will not explicitly display this here.

The key to establishing that L

I

is a universal critical theory is to ex-

amine its behavior under a scaling transformation. To obtain a physical

picture of this transformation it is best to think of L

I

as an e�ective

theory of an underlying lattice problem, applicable only at length scales

larger than some lattice spacing a, or momenta smaller than � = �=a.

We are ultimately interested in long distance physics, and so it is use-

ful to think of eliminating some short distance degrees of freedom from

L

I

: say all modes of the �eld 	 with momenta between � and �e

�`

,

where e

�`

is a dimensionless rescaling factor. As (4.43) involves only a

Gaussian functional integral, integrating these modes out will only add

an overall additive constant to the free energy (we will later meet situa-

tions, e.g., in Section 6.1, where the consequences of integrating out the

short distance modes is not so trivial). We are left with a new theory

with the same action as L

I

, but valid only at length scales larger that

ae

`

. We complete the scaling transformation by rescaling lengths, times

and �elds so that the resulting L

I

has the same form and short distance
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cuto� as the original L

I

. To this end we de�ne

x

0

= xe

�`

�

0

= �e

�z`

	

0

= 	e

`=2

: (4.46)

The reader can easily check that new L

I

expressed in terms of x

0

, �

0

and 	

0

has the same form, and the same short distance cuto� a, as the

original L

I

had in terms of x, � and 	 at the position of the quantum

critical point � = T = 0. The parameter z is the dynamic critical

exponent and determines the relative rescaling factors of space and time.

In the present case, only the choice z = 1 leaves the velocity c invariant.

Indeed, all of the problems in Part 2 of this book will have z = 1 as they

are related to classical problems which are fully isotropic in D spatial

dimensions. When viewed as a transformation on the continuum theory,

(i.e., for the case a! 0), it is evident that (4.46) is an exact invariance

of L

I

, and this shall often be a useful point of view to take. However,

the picture of a scaling transformation integrating out short distance

degrees of freedom is also quite useful in developing physical intuition.

The invariance of L

I

at � = T = 0 under (4.46) means that all

observable correlators must also be invariant under it. We will put this

invariance to good use shortly. The reader should view the invariance

(4.46) as playing the same role as, e.g., invariance of the Hamiltonian

of the hydrogen atom under spatial rotations. The latter allows one to

classify observables under di�erent representations of the rotation group,

and we will shortly discuss how rescaling invariance classi�es operators

and couplings.

Let us move away from the critical point � = 0, T = 0, by changing

� but keeping T = 0. Under the rescaling (4.46) the action L

I

remains

invariant only if we introduce a new �

0

�

0

= �e

`

: (4.47)

Unlike at the critical point, it is necessary to rede�ne a coupling constant

in L

I

. So at a �xed � 6= 0, the correlators of L

I

are not scale invariant.

Nevertheless, the simple behavior of � under the rescaling transforma-

tion does place constraints on the allowed form of its correlators. We

also �nd it useful to consider the consequences of repeated scaling trans-

formations, in which case it is useful to de�ne an `-dependent �(`) which
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satis�es the di�erential equation

d�

d`

= �: (4.48)

We see that any initially non-zero � grows inde�nitely as one transforms

to larger scales (larger `), and such perturbations away from the scale-

invariant quantum critical point are known as relevant perturbations.

It is clear that they destroy scale-invariance at the largest scales and

therefore must be included in any theory of the system.

This is a convenient place to introduce the concept of the scaling

dimension of a coupling constant. This is simply the power to which the

length rescaling factor e

`

must to raised to obtain the coupling constant's

scaling transformation. The scaling dimension plays a role analogous to

the angular momentum quantum number ` in systems with rotation

invariance: the latter determines the speci�c action of the symmetry

group and places restrictions on possible invariant combinations, and we

will �nd the same for the former. We will denote the scaling dimension

of � by dim[�], and so

dim[�] = 1; (4.49)

to ensure �

0

= �(e

`

)

dim[�]

. It is conventional to de�ne the exponent �

as the inverse of the scaling dimension of the most relevant perturbation

about a quantum critical point; in the present case, this will turn out to

be �, and so

� = 1 (4.50)

We can also talk about the scaling dimension of an operator, and clearly

from (4.46) we have

dim[	] = 1=2: (4.51)

We may also talk of scaling dimensions of space and time themselves,

which are clearly

dim[x] = �1 dim[� ] = �z (4.52)

The temperature, T , is just an inverse time, and therefore

dim[T ] = z: (4.53)

This is positive, and so, not surprisingly, T is also a relevant perturbation

at the quantum critical point. Let us also consider the scaling dimension

of the free energy density F of the system (we always subtract out

from F the ground state energy at the quantum critical point � = 0
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and consider the singular behavior of the remainder). This is given by

F = �(T=V ) lnZ where V is the volume, and Z is the partition function.

As the logarithm is dimensionless, and clearly dim[V ] = d dim[x], we

have

dim[F ] = d+ z: (4.54)

Finally, we also need the scaling dimension of the order parameter �̂

z

.

This is not a simple local function of the Fermi �eld 	, is therefore quite

di�cult to determine. We will describe a relatively elaborate calculation

in Section 4.4 which shows that

dim[�̂

z

] = 1=8: (4.55)

This is the �rst example of what is known as an anomalous dimension.

All previous scaling dimensions coincided with their so-called engineer-

ing dimension, i.e., that obtained by the familiar dimensional analysis

of lengths and times in meters and seconds, with the additional freedom

to use powers of the velocity c to convert all times into lengths; the

anomalous dimension is de�ned the di�erence of the scaling and engi-

neering dimensions, and so all previous anomalous dimensions were 0.

The engineering dimension of �̂

z

, a dimensionless matrix, is clearly 0.

Nevertheless, we will see that it has a non-zero scaling dimension. This

can happen without violating equality of engineering dimensions (which

must always be preserved) because we have the additional freedom to

use powers of the lattice energy scale J (or the lattice spacing, a) in

de�ning the continuum limit of observables. Indeed, (4.55) implies that

it is only the combination J

1=8

�̂

z

which has correlators which are �nite

in the continuum limit a! 0 discussed below (4.42). Further discussion

on anomalous dimensions can be found in texts [184] on phase transitions

in classical statistical mechanics.

Armed with the knowledge of these scaling dimensions, we can put

important general constraints on the structure of various universal scal-

ing forms. We shall follow a simple, general convention in presenting

these scaling forms. First pick the observable of interest and determine

its scaling dimension. Then write down as a prefactor that power of T

which has the same scaling dimension as the observable. This multiplies

a dimensionless universal scaling function of a number of arguments;

each argument should be a coupling or co-ordinate times a power of T

so that the combination has net scaling dimension 0. Finally, powers

of innocuous variables like c with zero scaling dimension are inserted so

that the engineering dimensions of the expressions are consistent.
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As an example of such considerations, let us consider the scaling form

satis�ed by the two-point correlator C(x; t) de�ned in (4.2):

C(x; t) = ZT

1=4

�

I

�

Tx

c

; T t;

�

T

�

: (4.56)

Here Z is an overall non-critical normalization constant, with zero scal-

ing dimension, which depends on the details of the microscopic physics;

its presence is related to the anomalous dimension of �̂

z

and consistency

of (4.56) requires Z have engineering dimension �1=4. We will shortly

relate Z to observable properties of the ground state. The scaling func-

tion �

I

depends universally on its three arguments. The power of T in

the front follows from (4.55) and (4.53). Notice that the physics depends

completely on the ratio of two energy scales, that of the T = 0 energy

gap to temperature: �=T . The central purpose of this chapter shall be a

fairly complete description of the physical properties of �

I

as a function

of �=T .

It is very important to note that the scaling form (4.56) will not satisfy

the relationship C(0; 0) = 1, which is exactly obeyed by the lattice

model: this is a short distance property which is lost once the continuum

limit has been taken. Alternatively stated, the sum-rule (4.6) will not

be obeyed by the Fourier transform of (4.56).

We can also describe rather explicitly the sense in which �

I

is univer-

sal, i.e., what happens if we generalize H

I

or L

I

to include other short

range couplings ? There are two di�erent types of perturbations to L

I

that are possible. The �rst type arises from higher spatial gradients in

the mapping from the particular Hamiltonian H

I

, and the simplest of

these is

�

1

	

y

@

2

	

@x

2

: (4.57)

The second type comes from additional terms we could add to H

I

, like

�̂

x

i

�̂

x

i+1

, which respect the symmetry (1.11), and are therefore not ex-

pected to modify qualitative features of the transition; after the Jordan-

Wigner transformation, and expansion in spatial gradients, such a term

induces in the continuum limit a term

�

2

	

y

@	

y

@x

@	

@x

	; (4.58)

notice that two spatial gradients are required because the term with

only one would vanish because of the Fermi statistics identity 	

2

= 0.
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A simple computation shows that

dim[�

1

] = �1 dim[�

2

] = �2: (4.59)

These scaling dimensions are negative, and therefore when we integrate

the analog of a 
ow equation like (4.48), we �nd that any initially non-

zero �

1;2

decrease inde�nitely in absolute value upon transforming to

larger scales. Such couplings are denoted as irrelevant as they can be

neglected in a discussion of the leading long distance and low T proper-

ties.

The absence of other relevant perturbations at � = 0 implies that L

I

is the universal continuum quantum �eld theory describing crossovers

near the � = 0, T = 0 quantum-critical point. It is fortunate that

this universal theory happens to be expressible as a free fermion model.

Although our original motivation for examining H

I

was its solvability,

the arguments of this section have shown that this choice also happily

coincides with that required for obtaining a universal critical theory.

There are two types of consequences of the irrelevant couplings. The

�rst is that the values of the parameters Z, � and c appearing in the

scaling form (4.56) change; this change is quite di�cult to compute,

and therefore we should consider Z, � and c to be de�ned by some

experimental observable at T = 0|� de�ned to be the energy gap at

T = 0, c is the velocity of excitations at � = 0, and Z will be shown

later to be related to certain amplitudes at T = 0. The second is that

there are subleading corrections to the whole scaling form itself: the

form of these corrections can be deduced from the general rules stated

earlier, and we �nd that the result (4.56) has multiplicative corrections

like

�

1 + �

1

T + �

2

T

2

+ : : :

�

: (4.60)

These corrections are expected to be unimportant at low enough T .

Let us compute �nite temperature correlators of the free fermion �eld

	. These correlators are not related to any local observable of the Ising

chain, and therefore cannot be measured experimentally. Our main pur-

pose in discussing them is to further illustrate the present scaling ideas

in a simple context. The two-point 	 correlators can be computed by

performing the analog of the lattice Bogoliubov transformation on the

continuum theory. We found for imaginary time � > 0




	(x; �)	

y

(0; 0)

�

=

1

2

Z

1

�1

dk

2�

e

ikx

e

cjkj=T

+ 1

�

e

cjkj(1=T��)

+ e

cjkj�

�
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=

�

T

4c

��

1

sin(�T (� � ix=c))

+

1

sin(�T (� + ix=c))

�

: (4.61)

In a similar manner, we can �nd

h	(x; �)	(0; 0)i =

�

iT

4c

��

1

sin(�T (� � ix=c))

�

1

sin(�T (� + ix=c))

�

:

(4.62)

The results (4.61,4.64) have precisely the scaling forms that would have

been expected under the scaling dimensions in (4.46). At T = 0, (4.61)

simpli�es to




	(x; �)	

y

(0; 0)

�

=

1

4�

�

1

c� � ix

+

1

c� + ix

�

: (4.63)

Now notice that the transformation

c� � ix!

c

�T

sin

�

�T

c

(c� � ix)

�

(4.64)

connects the T = 0 and T > 0 results. This mapping is actually an

example of a very general connection between all T = 0 and T > 0

two-point correlators of the continuum theory L

I

. The existence of this

mapping is due to a larger conformal symmetry of L

I

[72]: the reader

is referred to Ref [247] for further discussion on this point. Here we will

defer discussion of this mapping to Chapter 14 where it will arise as a

simple consequence of the bosonization method.

4.4 Equal time correlations of the order parameter

This section is of a technical nature. Its main purpose is to show how

one may obtain the result (4.55) that dim[�̂

z

] = 1=8. We will also

obtain explicit expressions for certain crossover functions which cannot

be obtained otherwise. The limiting forms of these crossover functions,

and all of the interesting dynamical properties of the system will be

obtained again later in Section 4.5 using simple physical arguments that

rely on the bosonic picture of the excitations developed in Section 4.1

using the large and small g expansions. Most readers may therefore

glance at the next paragraph where we outline the main results, and

omit the remainder of this section.

We will begin by writing down the main result, and then outline how it

is obtained. The equal-time two-point correlation of the order parameter
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has the following long distance limit at any T > 0 [425]

lim

jxj!1

C(x; 0) = ZT

1=4

G

I

(�=T ) exp

�

�

T jxj

c

F

I

(�=T )

�

; (4.65)

where Z is the non-universal constant introduced earlier in (4.56), and

F

I

(s) and G

I

(s) are universal scaling functions. Notice that (4.65)

is completely consistent with the general scaling form (4.56). A cru-

cial property of (4.65) is the prefactor of T

1=4

, which establishes that

dim[�̂

z

] = 1=8. A second important property is that the two-point cor-

relations decay exponentially to zero at large enough x: so the T = 0

long-range-order discussed in Section 4.1.2 disappears at any T > 0 :

we will later give a simple physical explanation of this. The exponential

decay de�nes a correlation length � which obeys

�

�1

=

T

c

F

I

�

�

T

�

: (4.66)

The exact, self-contained expression for the universal function F

I

is [425]

F

I

(s) = jsj�(�s) +

1

�

Z

1

0

dy ln coth

(y

2

+ s

2

)

1=2

2

(4.67)

The s > 0 (s < 0) portion of F

I

describes the magnetically ordered

(paramagnetic) side. Despite its appearance, the function F

I

(s) is smooth

as a function of s for all real s, and is analytic at s = 0. The analyticity

at s = 0 is required by the absence of any thermodynamic singularity

at �nite T for � = 0. This is a key property, which was in fact used to

obtain the answer in (4.67). The exact expression for the function G

I

(s)

is also known [425]

lnG

I

(s) =

Z

1

s

dy

y

"

�

dF

I

(y)

dy

�

2

�

1

4

#

+

Z

1

1

dy

y

�

dF

I

(y)

dy

�

2

; (4.68)

and its analyticity at s = 0 follows from that of F

I

. For the solvable

modelH

I

, we chose the overall normalization ofG

I

such that Z = J

�1=4

.

In general, the value of Z is set by relating it to an observable, as we will

show below. Also note that Z has no dependence on �, and is therefore

non-singular at the quantum critical point.

We show a plot of the universal functions F

I

and G

I

in Fig 4.2. Notice

that there are perfectly smooth at � = 0 (s = 0).

We will outline how to establish (4.65). We will work with the lattice

model H

I

, and consider the evaluation of h�̂

z

i

�̂

z

i+n

i. The continuum

limit for the correlators of L

I

can only be taken at a relatively late
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Fig. 4.2. The crossover functions for the correlation length (F

I

) and the am-

plitude (G

I

) as a function of s = �=T .

stage. We use the fermionic representation (4.29) and the simple identity

1� 2c

y

i

c

i

= (c

y

i

+ c

i

)(c

y

i

� c

i

), and obtain [306]

h�̂

z

i

�̂

z

i+n

i =

*

(c

y

i

+ c

i

)

2

4

i+n�1

Y

j=i

(c

y

j
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j

)(c

y

j

� c

j

)

3

5

(c

y

i+n
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i+n

)

+

=

*
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i

� c

i

)

2
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Y
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(c

y

j
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j

)(c

y

j

� c

j

)

3

5

(c

y

i+n

+ c

i+n

)

+

: (4.69)

Notice that the string only extends between the sites i and i+ n, with

the operators on sites to the left of i having cancelled between the two

strings. Now, using the notation

A

i

= c

y

i

+ c

i

; B

i

= c

y

i

� c

i

(4.70)

we have

h�̂

z

i

�̂

z

i+n

i = hB

i

A

i+1

B

i+1

� � �A

i+n�1

B

i+n�1

A

i+n

i: (4.71)

Since the expectation values are with respect to a free Fermi theory,

the expression on the right hand side can be evaluated by the �nite

temperatureWick's theorem [146] which relates it to a sum over products



4.5 Finite temperature crossovers 75

of expectation values of pairs of operators. The expectation value of any

such pair is easily calculated

hA

i

A

j

i = �

ij

hB

i

B

j

i = ��

ij

hB

i

A

j

i = �hA

j

B

i

i = D

i�j+1

(4.72)

with

D

n

�

Z

2�

0

d�

2�

e

�in�

e

D(e

i�

) (4.73)

and

e

D(z = e

i�

) �

�

1� gz

1� g=z

�

1=2

tanh

�

J

T

((1� gz)(1� g=z))

1=2

�

; (4.74)

notice that the argument of the tanh (which arises from the thermal

Fermi distribution function) is simply "

�

=2T . In determining hB

i

A

j

i,

we have used the representation (4.35) and evaluated expectation values

of the 


k

under the free fermion Hamiltonian (4.38). Collecting the

terms in the Wick expansion, we �nd




�̂

z

i
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z
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�
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�

�

�

�

(4.75)

We are now faced with the mathematical problem of evaluating the

determinant T

n

: to obtain the universal scaling limit answer we need

to take the limit n ! 1 while keeping the system close to its critical

point. The expression for T

n

is in a special class of determinants known

as Toeplitz determinants, and the limit T

n!1

can indeed be evaluated

in closed form using a fairly sophisticated mathematical theory. We will

not present the details of this evaluation here, and refer the reader to

the literature [338, 333, 38, 425]. The �nal, universal, result has already

been quoted at the beginning of this section.

4.5 Finite temperature crossovers

The key result of the previous section was that equal-time correlations of

the order parameter, C(x; 0), decay exponentially to zero at any T > 0.
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The expression for the correlation length as a function of �=T was given

in (4.66). From this result we can easily obtain the following important

limiting forms; these will also be rederived in this section using simpler

physical arguments

� =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

c

r

�

2�T

e

�=T

for �� T

4c

�T

for j�j � T

c

j�j

for �� �T

(4.76)

Notice that for � > 0, the correlation length diverges exponentially

as T ! 0: as we will show explicitly in Section 4.5.1 below, this is

a characteristic property of a state with long-range order at T = 0

which disappears at any nonzero T . Precisely at � = 0, the correlation

length diverges as � 1=T , which agrees with the naive analysis of scaling

dimensions at a quantum critical point � T

�1=z

. Finally for � < 0,

the correlation length reaches a �nite value as T ! 0, suggesting a

quantum paramagnetic ground state. These dependencies imply the

important crossover phase diagram shown in Fig 4.3: there are three

distinct universal regimes, characterized by the limiting forms in (4.76),

determined by the largest of the two characteristic energy scales, � or T .

A closely related phase diagram was discussed by Chakravarty, Halperin

and Nelson [83] in the context of a model we shall study in Chapter 7,

with a di�erent terminology for the various regimes. We �nd our choices

more appropriate and convenient, although we shall brie
y recall their

notation in the following subsections.

There are two low T regimes with T � j�j. The one for � > 0, on

the magnetically ordered side, has an exponentially diverging correlation

length � as T ! 0; it will be studied in Section 4.5.1. The other low T

regime with � < 0 has a correlation length which saturates at a �nite

value as T ! 0; it will be studied in Section 4.5.2. Then there is a novel

continuum high T regime, T � j�j, where the physics is controlled

primarily by quantum critical point � = 0 and its thermal excitations,

and is described by the associated continuum quantum �eld theory: its

properties will be discussed in Section 4.5.3. This is the analog of the

\quantum-critical" regime of Ref. [83], but we prefer the term \high

T" as a more accurate description of the dynamical properties of this

regime. It is implicit in our high T limit here that we are not taking the
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g

Magnetic long-range order

CONTINUUM
    HIGH T

T

g
c

0

Quantum paramagnet

LOW TLOW T

LATTICE
 HIGH T

Fig. 4.3. Finite T phase diagram of the d = 1 quantum Ising model, H

I

, as

a function of the coupling g and temperature T . There is a quantum phase

transition at T = 0 g = g

c

= 1 with exponents z = 1, � = 1. Magnetic

long-range order (N

0

= h�̂

z

i 6= 0) is present only for T = 0 and g < g

c

. The

ground state for g > g

c

is a quantum paramagnet. There is an energy gap

above the ground state for all g 6= g

c

. We use an energy scale � � g

c

� g such

that the energy gap is j�j. The dashed lines are crossovers at j�j � T . The

low T region on the magnetically ordered side (� > 0, g < g

c

) is studied in

Section 4.5.1, and low T region on the quantum paramagnetic side (� < 0,

g > g

c

) is studied in Section 4.5.2. The continuum high T region is studied in

Section 4.5.3; its properties are universal and determined by the continuum

theory in (4.44). Finally there is also a \lattice high T" region with T � J

where the properties are non-universal and determined by the lattice scale

Hamiltonian: this region shall not be studied here.

temperature so large that the mapping to the universal continuum model

breaks down, and we have to allow for corrections like those in (4.60):

this implies that we should always satisfy T � J . There is therefore a

second, non-universal high T limit of the lattice model, also shown in

Fig 4.3, where T � J : we shall have little to say about this regime here.

The dynamic T = 1 Ising model results of Ref [71, 380, 381] fall into

this last regime; more generally discussions of dynamics at T =1 may

be found in Ref [180] and references therein.

The three subsections below will describe the universal dynamics of

the Ising chain in the regions of Fig 4.3. We will pay particular atten-

tion to the central concept of the phase coherence time �

'

which was

introduced in Section 3.2, where it was de�ned loosely as the time over

which the wavefunction of the system retains phase memory, and so

quantum interference is observable between local measurements sepa-

rated by times up to �

'

. We shall use more precise de�nitions here. We
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shall show that �

'

obeys

�

'

� �h=k

B

T in the \Continuum High T" region, T � �

�

'

� (�h=k

B

T )e

j�j=k

B

T

in the \Low T" regions, T � j�j(4.77)

Notice that �

'

always diverges as T ! 0, for, as we argued in Sec-

tion 3.2, the ground state of the system has perfect phase memory. On

the magnetically ordered side (� > 0, g < 1), the divergence of �

'

is not

surprising as it is also accompanied by the divergence of the correlation

length, as we saw in (4.76). However, on the quantum paramagnetic

side (� < 0, g > 1), the correlation length saturates as T ! 0; this

clearly does not give a complete physical picture as the divergence of �

'

indicates a certain temporal coherence. Therefore, as already noted in

Section 3.2, the commonly used description of the � < �T region as

\quantum disordered" is quite misleading: there are quite precise long-

range correlations in time which characterize the perfect coherence of

paramagnetic ground state. Finally, in the continuum high T region, we

see that the lower bound on �

'

in (3.14) is saturated|this is therefore

the most incoherent region.

4.5.1 Low T on the magnetically ordered side, � > 0, T � �

In their study of the model of Chapter 7, Chakravarty et al. [83] called

the analogous regime \renormalized classical" [83]. The reasons for this

name will become clear below; however, this is not the only regime which

displays classical behavior, as we will see in Section 4.5.2.

First, let us consider the results for the equal-time correlations. As-

suming that it is valid to interchange the limits T ! 0 and x ! 1 in

(4.65), we can use the limiting values F

I

(1) = 0, G

I

(s!1) = s

1=4

to

deduce that (recall (4.21)):

N

2

0

� lim

jxj!1

C(x; 0) = Z�

1=4

at T = 0. (4.78)

Thus, as claimed earlier, there is long-range order in the g < 1 ground

state of H

I

, with the order parameter N

0

= h�̂

z

i = Z

1=2

�

1=8

|notice

that N

0

vanishes as g approaches g

c

from below with the exponent 1=8.

We can also use the relationship (4.78) to relate the parameter Z to the

observables N

0

and �. Turning next to non-zero T , for small T � �,

we obtain from the large s behavior of F

I

(s) (see (4.67)) that

C(x; 0) = N

2

0

e

�jxj=�

c

large jxj; (4.79)
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where the correlation length

�

�1

c

=

�

2j�jT

�c

2

�

1=2

e

�j�j=T

: (4.80)

is �nite at any non-zero T , showing that long-range order is present only

precisely at T = 0. We have put a subscript c on the correlation length

to emphasize that the system is expected to behave classically in this

low temperature region. This is a crucial characteristic of this region

and the reason for classical behavior is quite simple and familiar. The

excitations consists of particles (the kinks and anti-kinks of Section 4.1)

whose mean separation (� �

c

� e

�=T

) is much larger than their de

Broglie wavelengths (� (c

2

=�T )

1=2

, which is obtained by equating the

kinetic energy "

k

�� � c

2

k

2

=2� to the thermal equipartition value T=2)

as T ! 0, which is precisely the canonical condition for the applicability

of classical physics. It is also reassuring to note that (4.79) has the form

of equal-time correlations in the classical Ising chain at low T , which

were discussed in Section 2.1. The prefactor N

2

0

is the true ground state

magnetization including the e�ects of quantum 
uctuations, and this is

the reason for the adjective \renormalized" in the name for this region.

We show that it is possible to give a simple physical interpretation

for the value of �

c

in (4.80). The energy of a domain wall with a small

momentum k is �+c

2

k

2

=2�, and therefore classical Boltzmann statistics

tells us that their density, �, is

� =

Z

dk

2�

e

�(�+c

2

k

2

=2�)=T

=

�

T�

2�c

2

�

1=2

e

��=T

: (4.81)

Comparing with (4.80), we see that �

c

= 1=2�. This result follows if

we assume that the domain walls are classical point particles, which are

distributed independently with a density �. Consider a system of size

L� jxj, and let it containM thermally excited particles; then � =M=L.

Let q be the probability that a given particle will be between 0 and x.

Clearly,

q =

jxj

L

: (4.82)

The probability that a given set of j particles are the only ones between

0 and x is then q

j

(1 � q)

M�j

: as each particle reverses the orientation

of the ground state, in this case �̂

z

(x; 0)�̂

z

(0; 0) = N

2

0

(�1)

j

. Summing
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over all possibilities we have

C(x; 0) = N

2

0

M

X

j=0

(�1)

j

q

j

(1� q)

M�j

M !

j!(M � j)!

= N

2

0

(1� 2q)

M

� N

2

0

e

�2qM

= N

2

0

e

�2�jxj

; (4.83)

thus establishing the desired result.

This semiclassical picture can also be extended to compute unequal

time correlations. In this computation it is essential to consider the col-

lisions between the particles. Even though the particles are very dilute,

they cannot really avoid each other in one dimension, and neighbor-

ing particles will always eventually collide (this is not true in higher

dimensions where su�ciently dilute particles can be treated as non-

interacting). During their collisions, the particles are certainly closer

than their de Broglie wavelengths, and so the collisions must be treated

quantum mechanically. Indeed, these collisions will be characterized by

the two-particle S matrix which was considered earlier in Section 4.1:

the diluteness does allow us to consider the collisions of only pairs of

particles.

To study dynamic correlations, let us reexamine the explicit expres-

sion for C(x; t) in (4.2). We will show how it can be evaluated essentially

exactly using some simple physical arguments. The key is to recall that

classical mechanics emerges from quantum mechanics as a stationary

phase evaluation of a �rst-quantized Feynman path integral. We there-

fore attempt to evaluate the expression in (4.2) by such a path integral.

It is clear that the integral is over a set of trajectories moving forward in

time, representing the operator e

�iH

I

t

, and a second set moving back-

wards in time, corresponding to the action of e

iH

I

t

. In the semiclassical

limit, stationary phase is achieved when the backward paths are simply

the time reverse of the forward paths, and both sets are the classical

trajectories. An example of a set of paths is shown in Fig 4.4. Now

observe that

(i) the classical trajectories remain straight lines across collisions be-

cause the momenta before and after the collision are the same: this fol-

lows from the requirement of conservation of total momentum (k

1

+k

2

=

k

0

1

+k

0

2

) and energy ("

k

1

+ "

k

2

= "

k

0

1

+ "

k

0

2

) in each two-particle collision,

which has the unique solution k

1

= k

0

1

and k

2

= k

0

2

(or its equivalent

permutation, which need not be considered separately because the par-

ticles are identical) in one dimension;

(ii) for each collision, the amplitude for the path acquires a phase S

k

1

k

2
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(0,0)

(x,t)

x

t

Fig. 4.4. A typical semiclassical contribution to the double time path integral

for h�̂

z

(x; t)�̂

z

(0; 0)i. Full lines are thermally excited particles which propa-

gate forward and backward in time. The � signs are signi�cant only for g < g

c

and denote the orientation of the order parameter. For g > g

c

, the dashed

line is a particle propagating only forward in time from (0; 0) to (x; t).

along the forward path and its complex conjugate along the backward

path: the net factor for the collision is therefore jS

k

1

k

2

j

2

= 1.

These two facts imply that the trajectories are simply independently

distributed straight lines, placed with a uniform density � along the x

axis, with an inverse slope

v

k

�

d"

k

dk

; (4.84)

and with their momenta chosen with the Boltzmann probability density

e

�"

k

=T

=� (Fig 4.4).

Computing dynamic correlators is now an exercise in classical prob-

abilities. As each particle trajectory is the boundary between domains

with opposite orientations of the spins, the value of �̂

z

(0; 0)�̂

z

(x; t) is

the square of the magnetization renormalized by quantum 
uctuations

(N

2

0

) times (�1)

j

, where j is the number of trajectories intersecting the

dashed line in Fig. 4.4. Now it remains to average N

2

0

(�1)

j

over the

classical ensemble of trajectories de�ned above. This average can be

carried out in a manner quite similar to that in the equal-time compu-

tation earlier. Again choosing a system size L � jxj with M particles,

the probability q that a given particle with velocity v

k

is between the

points (0; 0) and (x; t) in Fig 4.4 is (compare (4.82))

q =

jx� v

k

tj

L

: (4.85)

We have to average over velocities, and then evaluate the summation in
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(4.83). This gives one of the central results of this chapter [442]

C(x; t) = N

2

0

R(x; t)

R(x; t) � exp

�

�

Z

dk

�

e

�"

k

=T

jx� v

k

tj

�

: (4.86)

(This relaxation function also appeared in Refs [323] and [123] in a

phenomenological analysis of related models by exponentiating a short-

time expansion which ignored collisions.) The equal-time or equal-space

form of the relaxation function R(x; t) is quite simple:

R(x; 0) = e

�jxj=�

c

R(0; t) = e

�jtj=�

'

; (4.87)

for general x; t R also decreases monotonically with increasing jxj or

jtj, but the decay is not simply an exponential. The spatial correlation

length �

c

is given in (4.80). We have identi�ed the equal-space correla-

tion time as the phase coherence time for obvious reasons: the long-range

order in the ground state is clearly a manifestation of phase coherence,

and its decay in time is a natural measure of �

'

. We can determine

�

'

from (4.86), and remarkably we �nd that �

'

is independent of the

functional form of "

k

and depends only on the gap:

1

�

'

=

2

�

Z

1

0

dk

d"

k

dk

e

�"

k

=T

=

2

�

Z

1

j�j

d"

k

e

�"

k

=T

=

2k

B

T

��h

e

�j�j=k

B

T

(4.88)

where we have momentarily inserted the fundamental constants �h, k

B

in the last step to emphasize the universality of the result.

In the limit T � � we are now able to completely specify the form of

the scaling function �

I

in (4.56). The behavior of �

I

is characterized by

the concept of a reduced scaling function which is determined entirely by

classical physics: we shall have several occasions to use this concept later

in this book. Notice that the original function �

I

had three arguments:

the scales of space and time relative to T , and the ratio �=T . For T � �

the last argument disappears, and we �nd that the scales of space and

time are determined respectively by the large classical scales �

c

and �

'

respectively. By an analysis of (4.86) we �nd that the correlations can
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be written in the following reduced classical scaling form

C(x; t) = N

2

0

�

R

�

x

�

c

;

t

�

'

�

; (4.89)

where clearly R(x; t) satis�es the scaling form

R(x; t) = �

R

�

x

�

c

;

t

�

'

�

: (4.90)

These scaling forms are valid only for T � �, and they must be consis-

tent with the fully quantum �

I

in (4.56) which is valid for all �=T . This

requirement implies that the scales �

c

and �

'

must be universal functions

of �=T , as we have already seen in the expressions (4.80) and (4.88).

Evaluating (4.86) we can obtain an explicit closed form expression for

�

R

:

ln�

R

(�x;

�

t) = ��x erf

�

�x

�

t

p

�

�

�

�

te

��x

2

=(�

�

t

2

)

: (4.91)

Notice that the characteristic time �

'

and length �

c

both diverge as

� e

�=T

, and so we can de�ne an e�ective classical dynamic exponent

z

c

= 1 (there is no fundamental reason why z

c

and z should have the

same value). We also note here that the classical dynamic scaling func-

tion obtained above is unrelated to the dynamic scaling functions asso-

ciated with a popular classical statistical model for dynamics of Ising

spins|the Glauber model [181]: the present underlying quantum dy-

namics leads to a rather di�erent e�ective classical model in which en-

ergy and momentum conservation play a crucial role, the time evolution

is deterministic, and the average is over the set of initial conditions.

All of the results above have been compared with exact numerical

computations and the agreement is essentially perfect. We show a typical

comparison in Fig 4.5. This agreement gives us con�dence that the

physical, `hand-waving', quasi-classical particle approach to dynamical

properties outlined above is in fact exact.

The Fourier transform of (4.89) and (4.91) yields the portion of the

dynamic structure factor, S(k; !) (de�ned in (4.4)), describing the T > 0

broadening of the T = 0 delta function in (4.23). We expect this broad-

ening to occur on a frequency scale of order 1=�

'

, and so the predominant

weight in S(k; !) is at frequencies ! � T . Under this condition, some

simpli�cations occur in the relationships between the response functions

introduced in the opening of this chapter. In particular, for ! � T , the


uctuation-dissipation theorem (4.9) reduces to its simpler, `classical'
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Fig. 4.5. Theoretical and numerical results from Ref. [442] for the real part of

the correlator h�̂

z

(x; t)�̂

z

(0; 0)i of H

I

at x = 20 with J = 1, g = 0:6 (therefore

� = 0:8), T = 0:3 and so the system is in the low T region on the magnetically

ordered side of Fig 4.3. The numerical data (shown in circles) was obtained

for a lattice size L = 512 with free boundary conditions This is compared with

the theoretical prediction in Eqn (4.86). The imaginary part of the correlator

was numerically found to be negligibly small, and the semiclassical theoretical

prediction is that it vanishes.

form

S(k; !) =

2T

!

Im�(k; !): (4.92)

As Im�(k; !) is always an odd function of !, in the limit that (4.92)

is obeyed, S(k; !) becomes an even function of !. Applying (4.92) to

(4.5), we see that the equal-time structure factor is simply T times the

static susceptibility

S(k) =

Z

d!

�

Im�(k; !)

!

= T�(k); (4.93)

where the second equation relies on the Kramers-Kronig transform in

(4.10). So we see that the static, zero frequency response to an external

�eld contains information on the equal-time spin correlations: it must

be remembered that this is only true for e�ectively classical systems in

which the predominant weight in the spectral density is at frequencies
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smaller than T , and is not true in general. For the present situation,

the value of S(k) follows immediately from (4.86) and (4.87):

T�(k) = S(k) = N

2

0

2�

c

1 + k

2

�

2

c

(4.94)

So the delta function in S(k) implied by (4.23) has been broadened on

a momentum scale �

�1

c

, and S(0) takes an exponentially large value

proportional to �

c

� e

�=T

.

Turning to the broadening in S(k; !), it is useful to introduce the

parameterization

2T

!

Im�(k; !) = S(k; !) = T�(k)�

'

�

Sc

(k�

c

; !�

'

) (4.95)

where �

Sc

is a universal scaling function whose form follows from a

Fourier transform of (4.91). We have inserted the prefactors in front of

�

Sc

because then it follows easily from (4.10) that its frequency integral

has a �xed normalization

Z

d!

2�

�

Sc

(k; !) = 1: (4.96)

We will use scaling forms like (4.95) at several other occasions in this

book. We performed a numerical Fourier transform of (4.91) and the

result for �

Sc

is shown in Fig 4.6. So the dynamic structure factor

has a large peak of order N

2

0

�

c

�

'

� e

2�=T

, and decays monotonically

to zero on a frequency scale � �

�1

'

and on a momentum scale � �

�1

c

.

The frequency width of �

Sc

broadens with increasing wavevector, but

its maximum remains at ! = 0.

The existence here of a classical reduced scaling function describing

relaxation of the order parameter re
ects an important underlying phys-

ical property: the clear separation of scales at which quantum and ther-

mal 
uctuations are dominant. Quantum 
uctuations are paramount at

distance scales up to c=� and these cause a reduction in the ordered mo-

ment from unity to N

0

. The in
uence of thermal 
uctuations is not felt

until the much larger scale �

c

, where the excitations behave classically

except during collisions.

4.5.2 Low T on the quantum paramagnetic side, � < 0,

T � j�j

In the study of the model of Chapter 7, Chakravarty et al. [83] called

the analogous regime \quantum disordered" [83]. However, as we have
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ΦSc

ω

Fig. 4.6. Plot of the scaling function �

Sc

(k; !), appearing in (4.95), as a func-

tion of ! at k = 0 (full line) and k = 1:5 (dashed line). This describes the

broadening of the delta function in the dynamic structure factor in (4.23) at

0 < T � �.

already noted and as we will show below, this nomenclature does not

capture the long range time correlations associated with the exponen-

tially large �

'

in this regime.

We begin by describing the equal-time correlations. We need to take

the s ! �1 limit of the functions F

I

(s), G

I

(s); from these limits we

�nd

C(x; 0) =

ZT

j�j

3=4

e

�jxj=�

; jxj ! 1 at �xed 0 < T � j�j; (4.97)

with the correlation length � given by

�

�1

=

j�j

c

+

�

2j�jT

�c

2

�

1=2

e

�j�j=T

(4.98)

So correlations decay exponentially on a scale � c=j�j, and there is no

long-range order.

The equal time correlations at T = 0 behave in a similar manner,

although the limits T ! 0 and jxj ! 1 do not commute for the prefactor
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of the exponential decay. Let us �rst use a simple argument to determine

the overall large-x dependence of the T = 0 correlation. We already

argued in the strong-coupling analysis of Section 4.1.1 that an important

feature of the spectral density of the quantum paramagnet was the quasi-

particle delta function shown in Fig 4.1. It is reasonable to expect

that the leading term in the large x decay is determined simply by the

contribution of this pole. We can combine this fact with the relativistic

invariance of the continuum theory H

F

in (4.61) to argue that near the

quasi-particle pole the dynamic susceptibility must have the form

�(k; !) =

A

c

2

k

2

+�

2

� (! + i�)

2

+ : : : ; T = 0 (4.99)

where � is a positive in�nitesimal; the continuum of excitations above

the three particle threshold in Fig 4.1 are represented by the ellipsis

in (4.99). The scale-factor A is the quasi-particle residue, and we will

obtain its value momentarily. First, we use (4.99) to deduce the T = 0

equal-time correlations. This is most simply done by �rst analytically

continuing (4.99) to imaginary frequencies !

n

, and then using the inverse

of the de�nition (4.7): this gives us

C(x; 0) = A

Z

d!

2�

Z

dk

2�

e

�ikx

!

2

+ c

2

k

2

+�

2

=

A

p

8�cj�jjxj

e

��jxj=c

; jxj ! 1 at T = 0: (4.100)

Comparing this result with (4.97) and (4.98), we see that the two results

di�er in the power of jxj that appears in the prefactor of the exponential.

This is acceptable because the two cases involve di�erent orders of limits

of T ! 0 and jxj ! 1, and there is no mathematical requirement that

the orders of limit commute: in (4.100) we have sent T ! 0 �rst, while

the limit jxj ! 1 was taken �rst in (4.97).

To complete the description of the equal-time correlators we need to

specify the value of A. This requires a microscopic lattice calculation

of the type considered in Section 4.4; an analysis of the large n limit

of T

n

at T = 0 was carried out by McCoy [333] and Pfeuty [382], and

comparing their results with (4.100) we can deduce that

A = 2cZj�j

1=4

; (4.101)

where we recall that Z = J

�1=4

for the nearest neighbor model H

I

in

(4.1). So the residue vanishes at the critical point � = 0, where the
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quasiparticle picture breaks down, and we will have a completely dif-

ferent structure of excitations. The relationship (4.101) also de�nes the

value of Z on the quantum paramagnetic side in terms of the observ-

ables A and �; this complements the result (4.78) which de�ned Z on

the magnetically ordered side.

The above is an essentially complete description of the correlations

and excitations of the quantum paramagnetic ground state. We turn to

the dynamic properties at T > 0. At nonzero T , there will be a small

density of quasi-particle excitations which will behave classically for the

same reasons as in Section 4.5.1: their mean spacing is much larger than

their de Broglie wavelength. The collisions of these thermally excited

quasi-particles will lead to a broadening of the delta function pole in

(4.99): the form of this broadening can be computed exactly in the

limit T � j�j using a semiclassical approach similar to that employed

for the ordered side [442]. The argument again employs a semiclassical

path-integral approach to evaluating the correlator in (4.2). The key

observation is that we may consider the operator �̂

z

to be given by

�̂

z

(x; t) = (2cZj�j

1=4

)

1=2

( (x; t) +  

y

(x; t)) + : : : (4.102)

where  

y

is the operator which creates a single particle excitation from

the ground state, and the ellipsis represent multi-particle creation or

annihilation terms which are subdominant in the long time limit. This

representation may also be understood from the g � 1 picture discussed

earlier, in which the single-particle excitations where j�i spins: the �̂

z

operator 
ips spins between the �x directions, and therefore creates and

annihilates quasiparticles.

The computation of the nonzero T relaxation is best done in real

space and time, so let us �rst write down the T = 0 correlations in this

representation. We de�ne K(x; t) to be T = 0 correlator of the order

parameter:

K(x; t) � h�̂

z

(x; t)�̂

z

(0; 0)i

T=0

=

Z

dk

2�

cZj�j

1=4

"

k

e

i(kx�"

k

t)

=

Zj�j

1=4

�

K

0

(j�j(x

2

� c

2

t

2

)

1=2

=c) (4.103)

where K

0

is the modi�ed Bessel function. This result is obtained by the

Fourier transform of (4.99) and (4.9). Note that for t > jxj=c, the Bessel

function has imaginary argument and is therefore complex and oscil-

latory. Indeed, (4.103) has the simple interpretation as the spacetime
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Feynman propagator of a single relativistic particle in one dimension;

this can be made more evident by looking at the non-relativistic limit of

(4.103 well within the light cone x� ct|in this case (4.103) reduces to

K(x; t) = Zj�j

1=4

e

i�t

�

1

2�i�t

�

1=2

exp

�

i

j�jx

2

2c

2

t

�

; (4.104)

which is the familiar Feynman propagator of a non-relativistic particle of

mass j�j=c

2

; the leading oscillatory term � e

i�t

represents the common

\rest mass" energy of all the particles. Well outside the light-cone,

x � ct, (4.103) reduces to the equal-time correlator obtained earlier in

(4.100): here the correlations become exponentially small. Our primary

interest shall be the T > 0 properties of the correlations within the light-

cone, where the correlations are large and oscillatory (corresponding to

the propagation of real particle), and display interesting semiclassical

dynamics.

Now we consider the T 6= 0 evaluation of (4.2) in the same semiclas-

sical path-integral approach that was employed earlier in Section 4.5.1.

Again we are dealing with semiclassical particles, although the physical

interpretation of these particles is quite di�erent: they are quasiparticle

excitations above a quantum paramagnet, and not domain walls between

magnetically ordered regions. As in Section 4.5.1 the path integral rep-

resentation of (4.2) leads to two sets of paths|forward and backwards

in time. However there is a special trajectory that moves only forward

in time: this is trajectory representing the particle which is created by

the �rst �̂

z

0

and annihilated at the second �̂

z

i

. The inverse process in

which the �rst �̂

z

0

annihilates a preexisting thermally excited particle

can be neglected as the probability of �nding such a particle at a given

location is exponentially small. Also as in the semiclassical limit, the

forward and backward trajectories of the thermally excited particles are

expected to be the same, the particle on the trajectory created by the �̂

z

0

must be annihilated at the �̂

z

i

for otherwise the initial and �nal states in

the trace in (4.2) will not be the same. This reasoning leads to a space-

time snapshot of the trajectories which is the same as in Fig 4.4, but

its physical interpretation is very di�erent. The dashed line represents

the trajectory of a particle created at (0; 0) and annihilated at (x; t),

and � signs in the domains should be ignored. In the absence of any

other particles this dashed line would contribute the T = 0 Feynman

propagator above, K(x; t), to h�̂

z

(x; t)�̂

z

(0; 0)i. The scattering o� the

background thermally excited particles (represented by the full lines in

Fig 4.4 (which are not domain walls)) introduces factors of the S matrix
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element S

k

1

k

2

in (4.17) at each collision; as the dashed line only prop-

agates forward in time, the S matrix elements for collisions between

the dashed and full lines are not neutralized by a complex conjugate

partner. All other collisions occur both forward and backward in time,

and therefore contribute jS

k

1

k

2

j

2

= 1. Using the low momentum value

S

k

1

k

2

= �1, we see that the contribution to h�̂

z

(x; t)�̂

z

(0; 0)i from the

set of trajectories in (4.4) equals (�1)

j

K(x; t) where j is the number of

full lines intersecting the dashed line. Remarkably, the (�1)

j

factor is

precisely the term that appeared in the analysis at low T on the magnet-

ically ordered side in Section 4.5.1, although for very di�erent physical

reasons. We can carry out the averaging over all trajectories as in the

analysis leading to (4.86), and obtain one of our main results for low T

dynamic correlations on the paramagnetic side [442]

C(x; t) = K(x; t)R(x; t) (4.105)

with K(x; t) is given by Eq. (4.103), and R(x; t) again speci�ed by the

second result (4.86). Now notice that in going from the magnetically or-

dered to the quantum paramagnetic side the only change in parameters

has been the change in sign of �. The dispersion spectrum "

k

is invariant

under this change of sign, and so we can use precisely the same expres-

sions for the relaxation function R(x; t) as before: the result (4.87) still

applies, and we can continue to use the expression (4.91) for the scaling

function �

R

. Further the characteristic space and time scales, �

c

and �

'

,

on which R varies are still given by (4.80) and (4.88) respectively: notice

that we were careful to insert the absolute value j�j in these expressions

even though that was not needed for the magnetically ordered side.

An interesting feature of the result (4.105) is that it clearly displays the

separation in scales at which quantum and thermal e�ects act. Quantum


uctuations determine the oscillatory, complex function K(x; t), which

gives the T = 0 value of the correlator. Exponential relaxation of spin

correlations occurs at longer scales � �

c

, �

'

, and is controlled by the

classical motion of particles and a purely real relaxation function. This

relaxation is expected to lead to a broadening of the quasi-particle pole

with widths of order �

�1

c

, �

�1

'

in momentum and energy space. We can

consider the presence of a quasi-particle delta function in the spectral

density of excitations above the ground state as a representation of the

perfect quantum coherence in the ground state, and so for T > 0 its

width in energy is a natural measure of the inverse phase relaxation

time 1=�

'

. In Fig. 4.7 we compare the predictions of Eq. (4.105) with

numerical results on a lattice of size L = 512. As expected, there is a



4.5 Finite temperature crossovers 91

-0.23

-0.13

-0.03

0.07

0 50 100 150t

Real

Imaginary

Fig. 4.7. Theoretical and numerical results from Ref. [442] for the correlator

h�̂

z

(x; t)�̂

z

(0; 0)i of H

I

at x = 30 with J = 1, g = 1:1 (therefore � = �0:2),

T = 0:1 and so the system is in the low T region on the paramagnetic side of

Fig 4.3. The numerical data was obtained for a lattice size L = 512 with free

boundary conditions; it has a \ringing" at high frequency due to the lattice

cuto�. The theoretical prediction is from the continuum theory prediction in

Eq. (4.105) and is represented by the smoother curve. The envelope of the

numerical curve �ts the theoretical prediction well.

rapid oscillatory part representing the Feynman propagator of a single

particle, and an envelope which is exponentially decaying at a much

slower rate. The theoretical curve was determined from the continuum

expression for K(x; t), but the full lattice form for "

k

was used. The

theory agrees well with the numerics; some di�erences are visible for

small x, outside the light cone, but this is outside the domain of validity

of (4.105).

We can also compute the structure factor S(k; !) from (4.105) by

taking the Fourier transform as in (4.4). This will mainly have weight

at positive frequencies ! � "

k

� j�j+ c

2

k

2

=(2j�j), corresponding to the

creation of a quasiparticle by the external probe. It is not possible to

analytically perform the Fourier transform in general, but the leading

term in an asymptotic expansion in T=j�j can be obtained in closed

form. For reasons discussed in Ref [117], it turns out that because

�

c

=c�

'

= (2T=�j�j)

1=2

� 1, the slower relaxation in time dominates the

Fourier transform, and we can simply evaluate the Fourier transform

while ignoring the x dependence of R:

S(k; !) �

Z

dt

Z

dxK(x; t)R(0; t)e

�i(kx�!t)
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=

�

2cZj�j

1=4

"

k

�

1=�

'

(! � "

k

)

2

+ (1=�

'

)

2

: (4.106)

This result holds for k close enough to the band minimum, with jkj �

p

T�=c; for larger k there is no alternative to complete numerical eval-

uation of the Fourier transform. The result (4.106) veri�es our earlier

expectation based upon the physical interpretation of 1=�

'

: the T > 0

relaxation merely modi�es the delta function into a Lorentzian of width

1=�

'

in energy space.

4.5.3 Continuum High T , T � j�j

We turn �nally to the universal continuum high T region of Fig 4.3,

T � j�j. We will not have anything to say about the lattice high T

region, and so will implicitly assume that T � J .

In our study of the two low T regions of Fig 4.3 we found that it

was possible to develop a semiclassical particle picture of phase relax-

ation because 1=�

'

� T . The present high T region will turn out to

be quite di�erent. We will �nd that no e�ective classical model can

provide an adequate description of the dynamics because the phase re-

laxation time is quite short: in particular we will �nd that 1=�

'

� T ,

so that, as noted earlier, this regime is maximally incoherent. The de

Broglie wavelength of the e�ective excitations will be of the same order

as their spacing: this holds whether we consider the excitations to be

the domain walls of the magnetically ordered phase, or the 
ipped spins

of the quantum paramagnet. Consequently, it is di�cult to disentangle

quantum and thermal e�ects: they both play an equally important role.

The large class of classical models discussed in the review of Hohenberg

and Halperin [228] cannot, therefore, be applied in the present context.

This novel regime of dynamics was �rst discussed in Refs [440, 97] in

the context of the model of Chapter 7, and was dubbed quantum relax-

ational: we �nd it more convenient to introduce it in this book in the

simpler context of the Ising chain.

As in the previous subsections, we begin by understanding the struc-

ture of the equal time correlations. Right at the critical point, � = 0,

g = g

c

, this high T regime extends all the way down to T = 0. At

the T = 0, g = g

c

quantum critical point, we can deduce the form of

the correlator by a simple scaling analysis. As the ground state is scale

invariant at this point, the only scale that can appear in the equal time

correlator is the spatial separation x; from the scaling dimension of �̂

z
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in (4.55), we then know that the correlator must have the form

C(x; 0) �

1

(jxj=c)

1=4

at T = 0, � = 0: (4.107)

Actually, we can also include time-dependent correlations at this level

without much additional work: we know that the continuum theory

(4.44) is Lorentz invariant, and so we can easily extend (4.107) to the

imaginary time result

C(x; �) �

1

(�

2

+ x

2

=c

2

)

1=8

at T = 0, � = 0: (4.108)

This result can also be understood by referring back to the classical D =

2 Ising model in (3.2): in this context (4.108) is simply the statement

that correlations are isotropic with all D dimensions, and so the long

distance correlations depend only upon the Euclidean distance between

two points.

We extend the result (4.108) to T > 0 by a trick which we will quote

without proof: later in Chapter 14 we will note an explicit derivation

using the bosonization method. The basic point is that the � = 0 con-

tinuum theory (4.44), in addition to being scale and Lorentz invariant,

is also invariant under conformal transformations of spacetime [247].

Turning on a T > 0 is equivalent, in imaginary time, of placing the

theory L

I

on a spacetime manifold which is a cylinder of circumference

1=T . However, it is known that one can conformally map the cylinder

to the in�nite plane, which allows one to obtain a remarkable and exact

relationship between T = 0 and T > 0 correlators in imaginary time at

the critical coupling � = 0. This mapping was explicitly obtained in

(4.64) where we simply noted it as an interesting property of a fermionic

correlator we were able to obtain explicitly for T > 0. The implication of

this discussion is that the same mapping can also be applied to (4.108),

allowing us to obtain the correlators at T > 0:

C(x; �) � T

1=4

1

[sin(�T (� � ix=c)) sin(�T (� + ix=c))]

1=8

� = 0:

(4.109)

We can obtain an independent con�rmation of this result by specializing

to the equal-time case again and comparing to our earlier results in

Section 4.4; we have from (4.109)

C(x; 0) �

T

1=4

[sinh(�T jxj=c)]

1=4
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� T

1=4

exp

�

�

�T jxj

4c

�

as jxj ! 1: (4.110)

Compare this with the precise results for this regime quoted earlier in

(4.65), where using the values F

I

(0) = �=4 (from evaluation of (4.67))

and G

I

(0) = 0:858714569 : : : we have

lim

jxj!1

C(x; 0) = ZT

1=4

G

I

(0) exp

�

�

�T jxj

4c

�

at � = 0: (4.111)

The two results, obtained by very di�erent methods, are in perfect agree-

ment. We can combine (4.111) with (4.109) to determine the prefactor

in (4.109), and so obtain our �nal closed-form result for the universal

two-point correlator at � = 0:

C(x; �) = ZT

1=4

2

�1=4

G

I

(0)

[sin(�T (� � ix=c)) sin(�T (� + ix=c))]

1=8

: (4.112)

As expected, this result is of the scaling form (4.56), and indeed com-

pletely determines the function �

I

for the case where its last argument

is zero. It is the leading result everywhere in the continuum high T

region of Fig 4.3. Notice that this result has been obtained in imaginary

time. Normally, as we have noted earlier, such results are not terribly

useful in understanding the long real-time dynamics at T > 0 because

the analytic continuation in ill-posed. However, in the present case, we

have the exact expression, and so the analytic continuation is a useful

tool.

Now let us turn to a physical interpretation of the main result (4.112).

Consider �rst the case T = 0. By a Fourier transformation of (4.108),

and using the normalization constant implied by (4.112), we obtain the

dynamic susceptibility

�(k; !) = Z(4�)

3=4

G

I

(0)

�(7=8)

�(1=8)

c

(c

2

k

2

� (! + i�)

2

)

7=8

; T = 0, � = 0

(4.113)

with � a positive in�nitesimal. Notice that this function has a branch

cut in the complex ! plane at ! = ck; this is to be contrasted with the

simple pole-like structure which appeared in the quantum paramagnet

at T = 0 in (4.99). In the present case the appearance of the branch cut

at the quantum critical point is a direct consequence of the anomalous

dimension of �̂

z

in (4.55), which led to the non-integer powers in (4.108)

and (4.113). We plot Im�(k; !) in Fig 4.8. There are no delta func-

tions in the spectral density like there were in the quantum paramagnet

(Fig 4.1), indicating that the �̂

z

operator has negligible overlap with
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Fig. 4.8. Spectral density, Im�(k; !)=Z, of H

I

at its critical point g = 1 (� =

0) at T = 0, as a function of frequency !, for a set of values of k.

the single fermion quasiparticle state of Section 4.2. Instead, we have

a critical continuum above a branch cut arising from a superposition of

states with an arbitrary number of fermionic quasiparticles. However,

the presence of sharp thresholds and singularities indicates that there is

still perfect phase coherence, as there must be in the ground state. It is

also interesting to think about how the T = 0 spectral density crosses

over from the form in Fig 4.1 characteristic of the quantum paramag-

net, to the critical continuum in Fig 4.8. Consider for instance the case

k = 0. In the quantum paramagnet, we have a quasi-particle delta

function at ! = �, a continuum above the three-particle threshold at

! = 3�, another above the �ve-particle threshold at ! = 5� and so on.

As we approach the critical point with � ! 0, all these continua come

crashing down in energy and their limiting superposition leads to the

critical form shown in Fig 4.8.

Now let us turn to T > 0. We Fourier transform (4.112) to obtain

�(k; !

n

) at the Matsubara frequencies !

n

and then analytically continue

to real frequencies. This gives us the leading result for �(k; !) in the
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Fig. 4.9. The same observable as in Fig 4.8, T

7=4

Im�(k; !)=Z, but for T 6= 0.

This is the leading result for Im� for T � j�j, i.e., in the high T region of

Fig 4.3. All quantities are scaled appropriately with powers of T , and the

absolute numerical values of both axes are meaningful.

high T region

�(k; !) =

Zc

T

7=4

G

I

(0)

4�

�(7=8)

�(1=8)

�

�

1

16

� i

! + ck

4�T

�

�

�

1

16

� i

! � ck

4�T

�

�

�

15

16

� i

! + ck

4�T

�

�

�

15

16

� i

! � ck

4�T

�

:

(4.114)

We show a plot of Im� in Fig 4.9. This result is the �nite T version of

Fig 4.8. Notice that the sharp features of Fig 4.8 have been smoothed

out on the scale T , and there is non-zero absorption at all frequencies.

For !; k � T there is a well-de�ned `reactive' peak in Im� at ! � ck

(Fig 4.9) rather like the T = 0 critical behavior of Fig 4.8. However the

low frequency dynamics is quite di�erent, and for !; k � T we cross-

over to the quantum relaxational regime [97]. This is made clear by

an examination of the quantity Im�(k; !)=! as a function of !=T and

ck=T ; notice from (4.9) that for ! � T this quantity is proportional
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Fig. 4.10. Plot of the spectral density T

11=4

Im�(k; !)=!Z as a function of

!=T and ck=T . Note that this is simply the quantity in Fig 4.9 divided by !.

The reactive peaks at ! � ck in Fig 4.9 are essentially invisible, and the plot

is dominated by a large relaxational peak at zero wavevector and frequency.

to the dynamic structure factor, S(k; !) (de�ned in (4.4)), which is in

turn proportional to the neutron scattering cross section. (We prefer

to work with Im�(k; !)=! rather than S(k; !) because the former is an

even function of the ! , while the latter is not; in any case, the two

are practically indistinguishable for low frequencies.) We show a plot of

Im�(k; !)=! in Fig 4.10 (notice that Fig 4.10 is simply Fig 4.9 divided

by !). Now the reactive peaks at ! � ck are just about invisible, and

the spectral density is dominated by a large relaxational peak at zero

frequency. We can understand the structure of Fig 4.10 by expanding

the inverse of (4.114) in powers of k and !; this expansion has the form

�(k; !) =

�(0; 0)

1� i(!=!

1

) + k

2

e

�

2

� (!=!

2

)

2

; (4.115)

where recall from (4.114) that �(0; 0) � T

�7=4

, and !

1;2

and

e

� are

parameters characterizing the expansion. For k not too large, the !

dependence in (4.115) is simply the response of a strongly damped har-
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Fig. 4.11. Comparison of the predictions of (4.114) (dots) and (4.115) (solid

line) for Im�(k; !)=! at ! = 0 as a function of ck=T . The best �t parameters

in (4.116) were used. The function (4.115) yields the square of a Lorentzian

as a function of k; a best �t by just a Lorentzian is also shown (dashed line),

and is much poorer.

monic oscillator: this is the reason we have identi�ed the low frequency

dynamics as \relaxational". The function in (4.115) provides an excel-

lent description of the spectral response in Fig 4.10. We determined the

best �t values of the parameters !

1;2

and

e

� by minimizing the mean

square di�erence between the values of Im�(k; !)=! given by (4.115)

and (4.114) over the range 0 < ! < 2T and 0 < ck < 2T and obtained

!

1

= 0:396 T

!

2

= 0:795 T

e

� = 1:280 c=T: (4.116)

The quality of the �t is shown in Figs 4.11 and 4.12 where we compare

the predictions of (4.114) and (4.115) for Im�(k; !)=! at ! = 0 as a

function of ck=T , and at ck=T = 0; 1:5 as a function of !=T respectively.

For k = 0 (! = 0) there is a large overdamped peak at ! = 0 (k = 0),

but a weak reactive peak at ! � ck does make an appearance at larger

wavevectors or frequencies.
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Fig. 4.12. Comparison of the predictions of (4.114) (dots) and (4.115) (solid

line) for (T=!)Im�(k; !)=�(k) as a function of !=T at ck=T = 0; 1:5. The

dispersion relation (4.10) implies that the area under both curves for �1 <

! < 1 is exactly �. Notice also the similarity of the quantity plotted to

the scaling function considered in (4.95) and Fig 4.6; however in the present

case S(k) 6= T�(k) as the dynamics is not e�ectively classical|in particular

S(0) = 1:058T�(0). The overall magnitude of Im� at ck=T = 1:5 is smaller

than this �gure would suggest, as �(k = 1:5)=�(0) = 0:216.

For an alternative, and more precise, characterization of the relax-

ational dynamics we can introduce the relaxation rate �

R

de�ned by

�

�1

R

� i�(0)

@�

�1

(0; !)

@!

�

�

�

�

!=0

=

S(0; 0)

2T�(0)

; (4.117)

where the second relation follows from (4.9). We have chosen this def-

inition because for the suggestive functional form (4.115), �

R

= !

1

,

the frequency characterizing the damping. However, using (4.114) we

determine:

�

R

=

�

2 tan

�

16

�

k

B

T

�h

� 0:397825

k

B

T

�h

; (4.118)

where we have inserted physical units to emphasize the universality of
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the result. Note that the value of �

R

is quite close to the value of !

1

which was determined by the least square minimization discussed above.

The rate �

R

is a satisfactory measure of how thermal e�ects have

rounded out the sharp, T = 0 phase-coherent structure in the dynamic

susceptibility in Fig 4.8: we can therefore identify it with the phase

coherence rate 1=�

'

. At the scale of the characteristic rate �

R

, the

dynamics of the system involves intrinsic quantum e�ects which can-

not be neglected. Description by an e�ective classical model (as was

appropriate in both the low T regions of Fig 4.3) would require that

�

R

� k

B

T=�h, which is thus not satis�ed in the high T region of Fig 4.3

under discussion here. As noted earlier, the reason for the quantum

nature of the relaxation is simply that the mean spacing between the

thermally excited particles (considered either as the domain walls of the

magnetically ordered state or the 
ipped spins of the quantum paramag-

net) is of order their de Broglie wavelength, and so the classical thermal

and quantum 
uctuations must be treated on an equal footing. It is

these quantum e�ects which lead to the intricate universal numerical

relation between the relaxational and reactive parameters determining

the response in (4.114) and (4.115).

4.5.4 Summary

Our detailed study of the T > 0 crossovers in the vicinity of the quantum-

critical point of the Ising chain has led to a rich variety of di�erent physi-

cal regimes, and so it is useful to summarize their main properties. Such

a summary is contained in our earlier Fig 4.3 and in Figs 4.13 and 4.14.

At short enough times or distances in all three regions of Fig 4.3, the

systems displays critical 
uctuations characterized by the dynamic sus-

ceptibility (4.113). The regions are distinguished by their behaviors at

the low frequencies and momenta. In both the low T regimes of Fig 4.3

(on the magnetically ordered and quantum paramagnetic sides), the long

time dynamics is relaxational and is described by e�ective models of

quasi-classical particles; however, the physical interpretation of the par-

ticles is quite di�erent between the two low T regimes|they are domain

walls on the magnetically ordered side, and 
ipped spins in the quantum

paramagnet. The relaxation time, or equivalently, the phase coherence

time, is of order (�h=k

B

T )e

(energy gap)=k

B

T

, and is therefore much longer

than �h=k

B

T ; it is this condition which ensures that quantum thermal

e�ects act at very di�erent scales, and allows for a semiclassical descrip-

tion of the low frequency dynamics. In contrast, the dynamics in the
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Fig. 4.13. Crossovers as a function of frequency for the Ising model in the dif-

ferent regimes of Fig 4.3. The high frequency critical 
uctuations are present

in all regimes and are characterized by (4.113). The two classical relaxational

regimes are described by multiple collisions of thermally excited quasi-classical

particles; the physical correlations in these two regimes are quite di�erent but

are described by the same relaxation function R in (4.86). The quantum relax-

ation is described by (4.114) and the relaxation rate (4.117). The \ordered"

regime is in quotes, because there is no long-range order, and the system only

appears ordered between spatial scales c=� and c�

'

. In the low T regions

1=�

'

� Te

�j�j=T

.

high T region is also relaxational, but involves quantum e�ects in an es-

sential way, as was described above. In this region, the spacing between

the thermally excited particles is of order their de-Broglie wavelength,

and the phase relaxation time is of order �h=k

B

T .

The ease with which our expressions for the phase coherence times �

'

in (4.88) and (4.118) have been obtained belies their remarkable nature.

Notice that we have worked in a closed Hamiltonian system, evolving

unitarily in time with the operator e

�iH

I

t=�h

, from an initial density ma-

trix given by the Gibbs ensemble at a temperature T . Yet, we have

obtained relaxational behavior at low frequencies, and determined exact

values for a dissipation constant. In contrast, in the theory of dynam-

ics near classical critical points [228], a statistical relaxation dynamics is

postulated in a rather ad hoc manner, and the relaxational constants are
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Fig. 4.14. Values of the correlation length, � (de�ned from the exponential

decay of the equal-time correlations of the order parameter), and the phase

coherence time, �

'

(de�ned as discussed in the respective sections), in the

di�erent regimes of Fig 4.3. The two low T regimes have an interpretation

in terms of quasi-classical particles, but the physical interpretation of the two

particles are very di�erent, as indicated.

Low T Continuum high T Low T

(magnetically ordered). (quantum critical). (quantum paramagnetic).
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�
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�

1=2

e

�=T
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�T
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j�j

�

'

�

2T

e

�=T

cot(�=16)

2T

�

2T

e

j�j=T

treated as phenomenological parameters to be determined by compari-

son with experiments. Our subsequent discussions of more complicated

models in higher dimensions will also only consider deterministic uni-

tary evolution from an initial density matrix, but we will only be able

to obtain approximate values of dissipation constants.

It is also worth contrasting the small k; ! behavior of the dynamic

structure factor, S(k; !) in the three regimes of Fig 4.3. At low T on

the quantum paramagnetic side, there is a sharp quasi-particle peak at

! � j�j whose frequency width is exponentially small (� Te

�j�j=T

);

this peak is only present for the case of energy absorption, ! > 0, and

has exponentially small weight on the energy emission side, ! < 0. In

the high T regime, the dominant peak of S(k; !) moves towards ! =

0 and has a width of order T . Finally, in the low T regime on the

magnetically ordered side, the peak in S(k; !) is at !; k = 0, but is now

symmetric in !, and has an exponentially large amplitude (� e

2�=T

) and

exponentially small widths in frequency (� Te

��=T

) and wavevector

(� (c=

p

T�)e

��=T

).

4.6 Applications and extensions

We conclude this and subsequent chapters by making contact with other

experimental or theoretical studies.
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Detailed studies of one-dimensional Ising magnets have been carried

out on the insulators CsCoBr

3

and CsCoCl

3

. The Co ions form chains

of antiferromagnetically interacting Ising spins. Their e�ective Hamil-

tonian is not the Ising chain in a transverse �eld, but the dynamics

and structure of the domain-wall excitations above the magnetically or-

dered ground state [518] are essentially identical to our discussion in Sec-

tion 4.5.1. Neutron scattering studies [536, 357, 183] have examined the

temperature induced broadening of the T = 0 delta function in (4.23).

Some interesting e�ects in the presence of a longitudinal magnetic �eld

in these systems have been discussed recently [287].

The dynamical results of Section 4.5.3 are of considerable value, as

these are the only known exact results for the low frequency response of

a system in the continuum high T (or `quantum critical') regime. We

will discuss the d = 2 generalization of this regime in Chapters 7 and 8,

where we will present approximate calculations which yield closely re-

lated dynamical results. Recent neutron scattering experiments by Aep-

pli et al. [2] on the high temperature superconductors have measured

spin response functions whose T , k and ! dependencies are well �t by

a functional form closely related to (4.115) and (4.116) (including the

Lorentzian squared momentum dependence in Fig 4.11), suggesting the

proximity of a quantum critical point to a ground state with long-range

spin ordering; we will comment further on these experiments in Sec-

tions 7.4 and 8.4, after we have discussed the theory in d = 2.



5

Quantum rotor models: large N limit

This chapter turns to the models obtained by the quantum-classical

mapping QC on the D-dimensional N -component classical ferromagnets

in (3.3) with N � 2: these are the O(N) quantum rotor models in

d = D � 1 dimensions, originally written down in (1.23).

The quantum Ising model studied previously had a discrete Z

2

sym-

metry. An important new ingredient in the rotor models will be the

presence of a continuous symmetry: the physics is invariant under a

uniform, global O(N) transformation on the orientation of the rotors,

which is broken in the magnetically ordered state. We will introduce the

important concept of the spin sti�ness, which characterizes the rigidity

of the ordered state, and determines the dispersion spectrum of the low

energy `spin-wave' excitations. Apart from this, much of the technology

and the physical ideas introduced earlier for d = 1 Ising chain will gen-

eralize straightforwardly, although we will no longer be able to obtain

exact results for crossover functions. The characterization of the physics

in terms of three regions separated by smooth crossovers, the high T and

the two low T regions on either side of the quantum critical point, will

continue to be extremely useful, and will again be the basis of our dis-

cussion. Because we will consider models in spatial dimensions d > 1,

it will be possible to have a thermodynamic phase transition at a non-

zero temperature. We shall be particularly interested in the interplay

between the critical singularities of the �nite temperature transition and

those of the quantum critical point.

The analysis will be carried out using a simple and important tech-

nical tool: the large N expansion [473, 316, 317, 64]. This chapter will

largely con�ne itself to the results obtained at N = 1. The results so

obtained will give an adequate description of gross features of the phase

diagram and some static observables, but will be quite inadequate for

104
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dynamical properties at non-zero temperatures. The latter problems

will be addressed in subsequent chapters.

We will examine here a slight extension of the quantum rotor model

(1.23):

H

R

=

Jeg

2

X

i

^

L

2

i

� J

X

hiji

^
n

i

�
^
n

j

�H �

X

i

^

L

i

(5.1)

Recall that the N -component vector operators
^
n

i

, with N � 2, are

of unit length,
^
n

2

i

= 1, and represent the orientation of the rotors on

the surface of a sphere in N -dimensional rotor space, and the opera-

tors

^

L

i

are the N(N � 1)=2 components of the angular momentum. We

will phrase our physical discussion using the physically important case

N = 3, in which case these operators satisfy the commutation relations

(1.19) on each site (the operators on di�erent sites commute); the gen-

eralization to other values of N is immediate but will not be discussed

explicitly for simplicity. The form (5.1) forH

R

di�ers from that in (1.23)

by a �eld H which couples to the total angular momentum; this �eld

should not be confused with the �eld

e

h in (2.69) which coupled to the

rotor orientation n. As we will see later, the �eld H does not have a

familiar analog upon inverting the mapping to (3.3). It is however an im-

portant perturbation of the quantum rotor model which arises in many

experimental applications. The total angular momentum is conserved

in zero �eld as it commutes with H

R

at H = 0, and we will see that this

has important implications for its scaling properties.

The study of the quantum rotor model H

R

in (5.1) will occupy a

substantial portion of Part 2 of this book. The motivation for this is

primarily theoretical, but important experimental connections also exist.

These will be discussed shortly in Section 5.1.1 below, but complete

discussions are postponed to Chapters 10 and 13. We will also discuss

contact with speci�c experiments in the concluding portion of chapters

in Part 2.

As we already noted in Section 1.4.2, there is a strong analogy between

the rotor HamiltonianH

R

in (5.1) and the Ising HamiltonianH

I

in (4.1).

We will be looking at the transition between a magnetically ordered state

with h
^
ni 6= 0 and O(N) symmetry broken, and a quantum paramagnet

in which equal-time correlations of n are short ranged. As in the Ising

model, it is the exchange term, proportional to J , that favors the ordered

state, while the `kinetic energy', proportional to Jeg leads to quantum


uctuations in the orientation of the order parameter and eventually to

loss of long-range order. The similarity between the two models will
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also be apparent in the strong (large eg) and weak coupling (small eg)

analyses in the Section 5.1. We do not have the bene�t of an exact

analysis as was performed for the Ising chain, but will instead study the

large N expansion in subsequent sections: the expansion will be setup

in Section 5.2, followed by descriptions of the N =1 solution for T = 0

and T > 0 in Sections 5.3 and 5.4 respectively.

Most of our results will be expressed in terms of the dynamic suscep-

tibility �

��

(

~

k; !) of the order parameter n. As in (4.7) this is de�ned

most conveniently in imaginary time

C

��

(x; �) � hn

�

(~x; �)n

�

(0; 0)i

�

��

(

~

k; !

n

) �

Z

1=T

0

Z

d

d

xC

��

(x; �)e

�i(

~

k�~x�!

n

�)

(5.2)

where n(x

i

; i�) is the imaginary time representation of the quantum op-

erator
^
n

i

. The dynamic structure factor S

��

(

~

k; !) is then de�ned as

in (4.4) and related to �

��

by a relationship analogous to (4.9). For

the most part, we will compute � in zero �eld H = 0. Our analysis of

the consequences of H will be restricted here to determining its linear

response susceptibility: for reasons that will become evident when we

consider the relationship between quantum rotors and quantum anti-

ferromagnets, we will call this susceptibility the uniform susceptibility,

�

u

. It is de�ned by the small H expansion of the free energy density

F = �T lnZ

F(H) = F(H = 0)�

1

2

�

u��

H

�

H

�

+ : : : (5.3)

5.1 Limiting cases

The pictures which emerge in the following two perturbative analyses

are expected to hold on either side of a quantum critical point at eg = eg

c

,

which separates the ordered and the quantum paramagnetic phases. We

will see later that eg

c

= 0 in d = 1, but eg

c

> 0 for d > 1.

5.1.1 Strong coupling eg � 1

The strong coupling expansion was discussed in Ref. [208], and brie
y

noted in Section 1.4.2. At eg =1, the exchange term in H

R

can be ne-

glected, and the Hamiltonian decouples into independent sites, and can

be diagonalized exactly. The eigenstates on each site are the eigenstates
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of L

2

; for N = 3 these are the states of (1.22) and (2.71)

j`;mi

i

` = 0; 1; 2; : : : ; �` � m � ` (5.4)

and have eigenenergy Jeg`(`+1)=2. The ground state of H

R

in the large

eg limit consists of the quantum paramagnetic state with ` = 0 on every

site:

j0i =

Y

i

j` = 0;m = 0i

i

(5.5)

Compare this with strong coupling ground state (1.7) of the Ising model.

Indeed, the remainder of the strong coupling analysis of Section 4.1 can

borrowed here for the rotor model, and we can therefore be quite brief.

The lowest excited state is a `particle' in which a single site has ` = 1,

and this excitation hops from site to site. An important di�erence from

the Ising model is that this particle is three-fold degenerate at H = 0,

corresponding to the three allowed values m = �1; 0; 1. The single

particle states are labeled by a momentum k and an azimuthal angular

momentum m, and have energy

"

~

k;m

= Jeg

 

1� (2=3eg)

X

�

cos(k

�

a) +O(1=eg

2

)

!

�Hm (5.6)

for a �eld H oriented along the angular momentum quantization direc-

tion; the sum over � extends over the d spatial directions. This result is

the analog of (4.14). The dynamic susceptibility, �, has a quasiparticle

pole at the energy of this particle, and odd particle continua above the

three particle threshold.

5.1.1.1 Mapping to double layer antiferromagnets

The present strong coupling expansion allows us to expose a simple

and important connection between O(3) quantum rotor models and a

certain class of `double layer' antiferromagnets. Actually the connection

between rotor models and antiferromagnets is far more general than

the present discussion may suggest, as we will see later in Chapter 13.

However, this discussion should enable the reader to gain an intuitive

feeling for the physical interpretation of the degrees of freedom of the

rotor model.

Consider a system with two layers of `Heisenberg spins' S

1i

and S

2i

,

where i is a site index within each layer, described by the Hamiltonian

H

d

= K

X

i

^

S

1i

�

^

S

2i

+ J

X

<ij>

�

^

S

1i

�

^

S

1j

+

^

S

2i

�

^

S

2j

�

: (5.7)
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The

^

S

ni

(n = 1; 2 the layer index) are spin operators usually represent-

ing the total spin of a set of electrons in some localized atomic states.

On each site, the spins

^

S

ni

obey the angular momentum commutation

relations

h

^

S

�

;

^

S

�

i

= i�

��


^

S




(5.8)

(the site index has been dropped above), while spin operators on di�erent

sites commute. These commutation relations are the same as those of the

^

L operators in (1.19). However there is one crucial di�erence between

Hilbert space of states on which the quantum rotors and Heisenberg

spins act. For the rotor models we allowed states with arbitrary total

angular momentum ` on each site, as in (2.71): so there were an in�nite

number of states on each site. For the present Heisenberg spins, however,

we will only allow states with total spin S on each site, and will permit

S to be integer or half-integer. Thus there are precisely 2S+1 states on

each site

jS;mi with m = �S : : : S; (5.9)

and the operator identity

^

S

2

ni

= S(S + 1) (5.10)

holds for each i and layer n. Experimental realizations of the double-

layer model H

d

include the spin-ladder compounds in d = 1 [34, 114]

and double-layer compounds in the family of the high temperature su-

perconductors in d = 2 [493, 494, 329, 342, 443, 444, 136].

Let us examine the properties of H

d

in the limit K � J . As a �rst

approximation, we can neglect the J couplings entirely, and then H

d

splits into decoupled pairs of sites each with a strong antiferromagnetic

coupling K between two spins. The Hamiltonian for each pair can be

diagonalized by noting that S

1i

and S

2i

couple into states with total

angular momentum 0 � ` � 2S, and so we obtain the eigenenergies

(K=2)(`(`+ 1)� 2S(S + 1)) degeneracy 2`+ 1: (5.11)

Note that these energies and degeneracies are in one-to-one correspon-

dence with those of a single quantum rotor in (5.4) and (2.71), apart

from the di�erence that the upper restriction on ` being smaller than

2S is absent in the rotor model case. If one is interested primarily in

low energy properties, then it appears reasonable to represent each pair

of spins by a quantum rotor.

We have seen that the K=J ! 1 limit of H

d

closely resembles the
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eg ! 1 limit of H

R

. To �rst order in eg we saw above that the term

proportional to J in H

R

enabled hopping motion of the triplet excitation

from one site to the next. However a simple computation shows that this

is also the primary consequence of the J term inH

d

. So we may conclude

that the low energy properties of the two models are closely related for

large K=J and eg. Somewhat di�erent considerations in Chapter 13 will

show that the correspondence also applies to the quantum critical point

to the magnetically ordered phase.

The main lesson of the above analysis is that the O(3) quantum rotor

model represents the low energy properties of quantum antiferromagnets

of Heisenberg spins, with each rotor being an e�ective representation of a

pair of antiferromagnetically coupled spins. The strong coupling spectra

clearly indicate the operator correspondence

^

L

i

=

^

S

1i

+

^

S

2i

, and so

the rotor angular momentum represents the total angular momentum

of the underlying spin system. Examination of matrix elements in the

large S limit shows that
^
n

i

/

^

S

1i

�

^

S

2i

: the rotor co-ordinate
^
n

i

is

the antiferromagnetic order parameter of the spin system. Magnetically

ordered states of the rotor model with h
^
n

i

i 6= 0, which we will encounter

below, are therefore spin states with long range antiferromagnetic order,

and have a vanishing total ferromagnetic moment. Quantum Heisenberg

spin systems with a net ferromagnetic moment are not modeled by the

quantum rotor model (5.1){these will be studied in Section 13.2 by a

di�erent approach.

5.1.2 Weak coupling, eg � 1

At eg = 0, the ground state breaks O(N) symmetry, and all the
^
n

i

vec-

tors orient themselves in a common, but arbitrary direction. Excitations

above this state consist of `spin waves' which can have an arbitrarily low

energy at H = 0, i.e., they are `gapless'. This is a crucial di�erence from

the Ising model, in which there was an energy gap above the ground

state. The presence of gapless spin excitations is a direct consequence of

the continuous O(N) symmetry of H

R

: we can make very slow deforma-

tions in the orientation of h
^
ni, and get an orthogonal state whose energy

is arbitrarily close to that of the ground state. Explicitly, for N = 3,

and a ground state polarized along (0; 0; 1) we parameterize

^
n(x; t) = (�

1

(x; t); �

2

(x; t); (1� �

2

1

� �

2

2

)

1=2

) (5.12)

where j�

1

j; j�

2

j � 1. In this limit, the commutation relations (1.19)

become [

^

L

1

; �

2

] = i and [

^

L

2

; �

1

] = �i, i.e., �

1

,

^

L

2

and �

2

,

^

L

1

are
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canonically conjugate pairs. We can determine the linearized Heisenberg

equations of motion for �

1

, �

2

at H = 0:

@�

1

@t

= Jeg

^

L

2

@L

2

@t

= Ja

2

r

2

�

1

(5.13)

and similarly for the pair �

2

, L

1

(we have taken the naive continuum

limit on a hypercubic lattice here). These equations can be solved to

yield two spin-wave normal modes with the dispersion "

k

= ck, where

the spin-wave velocity

c = Ja

p

eg: (5.14)

These normal modes can be quantized by the usual method for harmonic

oscillators, and thereby obtain a wavefunction for the ground state and

non-interacting spin-wave excited states. The reader should note the

distinction between the two modes in the ordered phase with the three

modes obtained in the quantum paramagnet in the strong coupling ex-

pansion above. In the ordered phase, rotations about the axis of h
^
ni do

not produce a new state, and so there are only two independent rotations

about axes orthogonal to h
^
ni which lead to gapless spin-wave modes.

The ground state wavefunction of the magnetically ordered state in-

cludes quantum zero-point motion of the spin waves about the fully po-

larized state. One consequence of the zero point motion is that ordered

moment on each site is reduced at order eg:

hn̂

3

i =

D

(1� �

2

1

� �

2

2

)

1=2

E

� 1� (1=2)




�

2

1

+ �

2

2

�

= 1�

p

ega

d�1

2

Z

d

d

k

(2�)

d

1

k

: (5.15)

In the last step we have evaluated the expectation value in the quantized

harmonic oscillator wavefunctions implied by (5.13) by standard means.

The integral over momenta k is cuto� at large k by the inverse lattice

spacing, but there is no cuto� at small k. We therefore notice a small k

divergence in d = 1, indicating an instability in the small eg expansion:

we will see that small eg prediction of a state with magnetic long range

order is never valid in d = 1, and the physical picture of the quantum

paramagnet introduced by the large eg expansion holds for all eg. In

contrast, the small eg expansion appears stable for d > 1, and we do

expect magnetically ordered states to exist. In this case, comparison of
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the small and large eg expansions correctly suggests the existence of a

quantum phase transition at intermediate eg.

The above was an analysis in the linearized, harmonic limit. The non-

linearities neglected above lead to non-zero spin-wave scattering ampli-

tudes, which we will show later are quite innocuous at low enough ener-

gies in dimensions d > 1. Precisely in d = 1, spin-wave interactions are

very important, and destroy the long-range order of the ground state, as

was already apparent from (5.15). For the classical ferromagnet (3.3),

which the present model maps to, this corresponds to the absence of

long-range order in D = 2, and is known as Hohenberg-Mermin-Wagner

theorem.

5.2 Continuum theory and large N limit

Both the continuum analysis, and the study of the large N limit are

most easily done in the imaginary time path integral. At H = 0, the

path integral can be derived by the inverse of the mapping discussed in

Section 2.3, and indeed leads to the expression (3.12) already presented.

The modi�cation necessary for H 6= 0 can be deduced by a simple trick

which relies on the fact that H couples to the conserved total angular

momentum. It is easy to see that the only e�ect of H is to cause a

uniform Bloch precession of all the rotors, and that this precession can

be `removed' by transforming to a rotating reference frame. Because

of a non-zero H each rotor acquires an additional precession �n̂

�

(t) =

��

��


H

�

n̂




(t)�t in a small time �t. Including this extra precession in

imaginary time in (3.12) we get the partition function

Z = Tr exp

�

�

H

R

T

�

�

Z

Dn(x; �)�(n

2

� 1) exp(�S

n

)

S

n

=

N

2cg

Z

d

d

x

Z

1=T

0

d�

h

(@

�

n� iH� n)

2

+ c

2

(r

x

n)

2

i

:

(5.16)

We have written the coupling to H in the form special for N = 3, but it

should be clear that for general N one writes a term that generates rota-

tions of O(N). Notice also the i in the precession term, which therefore

contributes a complex phase to the weights in the partition function: as

a result the �eld H has no analog in classical statistical mechanics prob-

lems in D dimensions. We will be satis�ed in this chapter, and in Part 2,

by simply examining the linear response of the system to a small H, as
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speci�ed by the susceptibility �

u

in (5.3). Properties beyond linear re-

sponse require examining the partition function (5.16) with a non-zero

H , including the complex weights: this problem is of a class we shall

examine only in Part 3, and we will defer the analysis to Section 13.4.

The coupling constant

g = N

p

ega

d�1

(5.17)

has the dimensions of (length)

d�1

, and will be the primary coupling we

will change to vary the physical properties of the rotor model.

The above action is valid only at long distances and times, so there is

an implicit cuto� above momenta of order � � 1=a and frequencies of

order c�. Our main interest here shall be the universal physics at scales

much smaller than �. The following large N analysis will make it clear

that such a universal regime does exist for d < 3, but that additional

information on cuto� scale physics is necessary for d � 3. This identi�es

d = 3 as the so-called upper-critical dimension of the model. The large

N analysis is especially suited for describing the universal physics in

d < 3, and we will restrict our attention to these cases here. Properties

in dimensions d � 3 are more easily analyzed by other methods, and will

be discussed later.

The framework of the N =1 solution [112, 62, 223, 466, 390, 440, 96,

97, 86] is quite easy to set up, at least in the phase without long range

order in the order parameter n; we will consider the case with long

range order later in this chapter. We impose the n

2

= 1 constraint by a

Lagrange multiplier, �. The action (5.16) then becomes atH = 0 (which

is assumed throughout the remainder unless explicitly stated otherwise)

Z =

Z

Dn(x; �)D�(x; �) exp(�S

n1

)

S

n

=

N

2cg

Z

d

d

x

Z

1=T

0

d�

h

(@

�

n)

2

+ c

2

(r

x

n)

2

+ i�(n

2

� 1)

i

;

(5.18)

We rescale the n �eld to

e
n =

p

Nn; (5.19)

and, as (5.18) is quadratic in the
e
n �eld, it can be integrated out to yield

Z =

Z

D�(x; �) exp

"

�

N

2

 

Tr ln(�c

2

r

2

� @

2

�

+ i�)
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�

i

cg

Z

1=T

0

d�

Z

d

d

x�

!#

: (5.20)

(See Ref [360] for further discussion on the interpretation of the func-

tional determinant above.) The action has a prefactor of N , and the

N = 1 limit of the functional integral is therefore given exactly by its

saddle point value. We assume that the saddle-point value of � is space

and time independent, and given by i� = m

2

. The saddle-point equation

determining the value of the parameter m

2

is

Z

�

d

d

k

(2�)

d

T

X

!

n

1

c

2

k

2

+ !

2

n

+m

2

=

1

cg

; (5.21)

where the sum over !

n

extends over the Matsubara frequencies !

n

=

2n�T , n integer. It is also not di�cult to evaluate the order parameter

susceptibility at N = 1 by inserting an appropriate source term in

(5.18): as expected the result is given simply by the propagator of the

n �eld in (5.18) with � replaced by its saddle-point value. The result

obeys �

��

= ��

��

where

�(k; !) =

cg=N

c

2

k

2

� (! + i�)

2

+m

2

; (5.22)

is also the propagator of the n �eld. The large N limit of the uniform

susceptibility, �

u

, can also be evaluated by �rst expanding F in powers

of H , and evaluating the resulting 4 and 2 point correlators of n at tree

level using the propagator in (5.22): this gives

�

u

= 2T

X

!

n

Z

d

d

k

(2�)

d

c

2

k

2

+m

2

� !

2

n

(c

2

k

2

+m

2

+ !

2

n

)

2

(5.23)

The Eqns (5.21,5.22,5.23) apply only when the system does not have

long-range spatial order (at T = 0 or T > 0), and O(N) symmetry

is preserved; they are the central results of the N = 1 theory, and

most of the remainder of this chapter will be spent on analyzing their

consequences. In spite of their extremely simple structure, these equa-

tions contain a great deal of information, and it takes a rather subtle

and careful analysis to extract the universal information contained in

them [440, 96, 97]. We will begin by characterizing the T = 0 ground

states, and compare the results to the strong and weak coupling analyses

noted earlier. Then we will turn to the �nite temperature crossovers.
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5.3 Zero temperature

At T = 0, we can make use of the relativistic invariance of the action

(5.16) to simplify our analysis. The summation over Matsubara frequen-

cies in (5.21) turns into an integral, and after introducing spacetime

momentum p � (k; !=c), the constraint equation (5.21) becomes

Z

�

d

d+1

p

(2�)

d+1

1

p

2

+ (m=c)

2

=

1

g

(5.24)

The integral on the left hand side increases monotonically with decreas-

ing m; as m ! 0, it diverges as ln(1=m) in d = 1, and has a maximum

�nite value at m = 0 in d > 1. It is then clear that it is always possible

to �nd a solution for (5.24) in d = 1, and for d > 1 there is no solution

to (5.24) for g < g

c

where

Z

�

d

d+1

p

(2�)

d+1

1

p

2

=

1

g

c

: (5.25)

We have chosen the symbol g

c

for the boundary point where the solution

ceases to exist suggestively following the discussion in Chapter 4: as we

will see shortly, the regime where the solution exists describes a quantum

paramagnetic ground state, and g

c

is the quantum critical point for a

transition to the g < g

c

magnetically ordered state. In d = 1 a solution

exists for all g, and so the general d discussion for g > g

c

below can be

applied to all g in d = 1. This indicates that the d = 1 ground state is

always a quantum paramagnet: this is a large N result and is manifestly

incorrect for N = 1 as we saw in Chapter 4; it also not true at N = 2,

but we will see that the large N theory leads to adequate results for all

N � 3 in d = 1. For g > g

c

there is a unique solution of the saddle-point

equation (5.24) describing a quantum paramagnetic ground state: we

will study its properties in the following subsection and �nd that they

are quite similar to those of quantum paramagnetic state of the Ising

chain. The d > 1 critical point at g = g

c

will be studied in the next

subsection. Determination of the d > 1 ground state for g � g

c

requires

a reanalysis of the derivation of the large N saddle equation. This will

be done in Section 5.3.3, where we �nd a state with magnetic long-range

order and spontaneous breakdown of the O(N) symmetry.
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5.3.1 Quantum paramagnet, g > g

c

For d > 1, subtract (5.24) from (5.25), and obtain

1

g

c

�

1

g

=

Z

�

d

d+1

p

(2�)

d+1

�

1

p

2

�

1

p

2

+ (m=c)

2

�

(5.26)

Now notice that for d < 3 it is possible to send the upper cut-o� �

to in�nity and still obtain a �nite result. Thus, provided we measure

quantities in terms of deviations from their values at g = g

c

, we see

that observables are insensitive to the nature of the cut-o�, i.e., they

are universal. For d � 3 it is necessary to retain the upper cut-o�, and

observables do have additional � dependence: as brie
y noted earlier,

this identi�es d = 3 as the upper-critical dimension. The remaining

analysis of this chapter will be implicitly restricted to d < 3, and we

will examine d � 3 by other, more convenient, methods in subsequent

chapters; in the language of the classical model (3.3), this restriction is

equivalent to D < 4, where D = 4 is its upper-critical dimension. For

1 < d < 3 we can evaluate the integral in (5.26) with an in�nite cut-o�

and obtain

1

g

c

�

1

g

= X

d+1

(m=c)

d�1

; (5.27)

where the constant X

d

� 2�((4� d)=2)(4�)

�d=2

=(d� 2); This equation

can be easily solved to obtain the required value of m. In d = 1, we have

g

c

= 0, and evaluating (5.24) directly, we �nd for small m, g

1

2�

ln

�

c�

m

�

=

1

g

; (5.28)

which also has a simple solution for m = c�e

�2�=g

. Apart from the

di�erence in the expression in the value of m above, the remaining dis-

cussion in this subsection will apply equally to d = 1 and d > 1.

A key step in the analysis of any ground state of a continuum theory,

is the determination of an energy scale which characterizes it. In this

case, the quantum paramagnet has a gap, �

+

, given by

�

+

� m(T = 0): (5.29)

We emphasize that, by de�nition, the gap �

+

is a temperature indepen-

dent quantity, and equals the temperature dependent value of m only at

T = 0. The presence of a gap is apparent in the structure of the spectral



116 Quantum rotor models: large N limit

density Im�(k; !), which from (5.22) is given by

Im�(k; !) = A

�

2

q

c

2

k

2

+�

2

+

�

�(! �

q

c

2

k

2

+�

2

+

)

��(! +

q

c

2

k

2

+�

2

+

)

�

(5.30)

which has weight only at frequencies greater than �

+

. The spectral

weight appears entirely in the form of delta functions which indicate the

presence of magnon quasiparticles; the quantity

A =

cg

N

(5.31)

is the quasi-particle residue. This magnon is obviously the same as

the three-fold degenerate particle that appeared earlier in the strong-

coupling analysis of the O(3) model in Section 5.1.1. The spectral den-

sity (5.30) is also identical in form to the exact result for the quantum

paramagnetic phase of the Ising chain obtained by taking the imaginary

part of (4.99). The n-particle continua (n � 3, odd) are absent here

in the N = 1 theory, but will appear later when we study 
uctuation

corrections.

We can also evaluate the uniform susceptibility �

u

by converting the

frequency summation in (5.23) to an integral, and then evaluating the

frequency integral. This gives the simple result

�

u

= 0: (5.32)

This result could have been anticipated. The ground state is a spin

singlet, the lowest excited state is a triplet which is separated by a gap.

In a small �eld H there is no change in the energy of the singlet, while

the one of the triplet states lowers its energy but remains above the

singlet for H < �

+

. The ground state therefore remains unchanged and

has vanishing uniform susceptibility.

Also justifying our identi�cation of this phase as a quantum param-

agnet, is that equal-time n correlations decay exponentially in space

1

N

hn(x; 0) � n(0; 0)i =

A

c

Z

d

d+1

p

(2�)

d+1

e

ip�x

p

2

+ (�

+

=c)

2

=

A

2c(2�)

d=2

(�

+

=c)

(2�d)=2

e

�x�=c

x

d=2

(5.33)

which identi�es �=c as the inverse correlation length. Notice again the

precise agreement of this result to that for the quantum paramagnetic
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phase of the Ising chain in (4.100), where 2cZ�

1=4

played the role of the

quasiparticle residue, A.

5.3.2 Critical point, g = g

c

This subsection applies only for 1 < d < 3. There is no critical point in

d = 1, and there are violations of naive scaling hypotheses for d � 3.

As g approaches g

c

from above, we see from (5.27) that the energy

gap, �

+

, vanishes as

�

+

� (g � g

c

)

1=(d�1)

(5.34)

The critical state at g = g

c

turns out to be scale-invariant at scales

much longer than �

�1

, as expected by analogy with the Ising model.

The coupling g is the parameter which tunes the system away from this

scale-invariant point, and as �

+

is an energy (inverse time) scale, the

de�nition (4.52), the de�nition of the exponent � above it, and the result

(5.34) identi�es the exponent

z� =

1

d� 1

(5.35)

The equal-time correlations decay as

hn(x; 0) � n(0; 0)i �

Z

d

d+1

p

(2�)

d+1

e

ikx

p

2

�

1

x

d�1

(5.36)

which is a power-law, as expected for a scale-invariant theory; the decay

as a function of time has the same exponent, and so

z = 1; (5.37)

as must be the case for a Lorentz-invariant theory. The application of

the scaling transformation on (5.36), also tells us that

dim[n] =

d� 1

2

: (5.38)

This result can also be simply understood by demanding that the term

R

d

d

x

R

d�(rn)

2

in the action be invariant under the scaling transfor-

mation. The value of the exponent z is exact, as it is �xed by Lorentz

invariance of the critical theory, but the values of � and dim[n] will have



118 Quantum rotor models: large N limit

corrections beyond the N =1 result, which will be discussed later. In

general, it is conventional to parameterize

dim[n] =

d+ z � 2 + �

2

; (5.39)

with �, the \anomalous dimension" of the �eld, accounting for deviations

from the scaling dimension obtained by demanding invariance of the

gradient squared term above for general z. Comparing with (5.38) we

see that � = 0 in the N = 1 theory. The exact solution of the Ising

chain had � = 1=4, as that gives dim[�̂

z

] = 1=8. A non-zero, positive,

value of � will appear upon consideration of 
uctuation corrections, and

has important physical consequences. In particular, it determines the

scaling dimension of the quasiparticle residue A: (5.39) implies that

dim[�(k; !)] = �2 + �, and demanding the consistency of this with the

expression (5.30), we conclude dim[A] = �. Therefore, as g approaches

g

c

from above

A � (g � g

c

)

��

; (5.40)

i.e., in general, the quasiparticle residue vanishes as the system ap-

proaches the critical point. Again this scaling is consistent with the

Ising model in which A = 2Z�

1=4

� (g � g

c

)

1=4

(see (4.101)). In the

present N = 1 theory, the quasiparticle residue Acg=N was non-zero

all the way up to g = g

c

, and this is consistent with N = 1 result of

� = 0|there is no dynamic scattering of the quasiparticle excitations at

N =1 but such scattering will appear upon including 1=N corrections

which will also induce a non-zero �.

If there are no quasiparticles for � 6= 0, what do the excitations look

like ? As in the Ising chain, there is a critical continuum of excitations,

whose spectral density is determined by �. Combining the Lorentz in-

variance of the theory with a simple analysis of scaling dimensions, we

see that the dynamic susceptibility must have the form

�(k; !) �

1

(c

2

k

2

� !

2

)

1��=2

; (5.41)

(compare (4.113)) and its imaginary part looks much like Fig 4.8. The

� = 0 case is of course special, in that the spectral density has a single

delta function at ! = ck, and the critical excitations have a particle-like

nature: this is clearly an artifact of the N =1 theory, and is one of its

major failings.

We can also use simple scaling arguments to determine the exact scal-

ing dimension of H, and therefore from (5.3) that of �

u

. Notice that
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in (5.16) H appears intimately coupled with a time derivative: as we

discussed earlier, this is related to the fact that the only e�ect of H

is to uniformly precess all the rotors, and this precession is not visible

in a rotating reference frame. This is an exact property of theory, and

therefore the precession angle must be invariant under scaling transfor-

mation. As a result the scaling dimension of H must be that of inverse

time, which implies from (4.52) that

dim[H] = z; (5.42)

and using (4.54) and (5.3) that

dim[�

u

] = d� z (5.43)

5.3.3 Magnetically ordered ground state, g < g

c

This subsection necessarily applies only for d > 1, as there is no ordered

state in d = 1.

Our analysis so far has shown no meaningful solution of the saddle-

point equations in the large N limit for g < g

c

. The culprit for this

shortcoming lies in the step before (5.20), where we indiscriminately

integrated out all N components of the n �eld [65]. As we expect a

magnetically ordered phase to appear for g < g

c

, it seems sensible to

allow for the possibility that 
uctuations of n along the direction of the

ordered ground state will be di�erent from those orthogonal to it. So

we write

n = (

p

Nr

0

; �

1

; �

2

: : : �

N�1

); (5.44)

where it is assumed that the order parameter is polarized along the 1

direction. Inserting this and (5.19) into (5.16), imposing the constraint

with a Lagrangemultiplier �, and integrating out only the �

1:::N�1

�elds,

we �nd

Z =

Z

D�Dr

0

exp

�

�

N � 1

2

Tr ln(�c

2

@

2

i

� @

2

�

+ i�)

+

iN

cg

Z

1=T

0

d�

Z

d

d

x�(1� r

2

0

)

#

(5.45)

In the large N limit, we can ignore the di�erence between N � 1 and

N , and obtain the saddle point equations with respect to variations in

� and r

0

. As before, m

2

is taken to be the saddle-point value of i�.
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The mean value of r

0

will determine the spontaneous magnetization at

N =1, which we denote by N

0

; so

N

0

= hn

1

i =

p

Nr

0

: (5.46)

The saddle point equations are

N

2

0

+ g

Z

�

d

d+1

p

(2�)

d+1

1

p

2

+ (m=c)

2

= 1

m

2

N

0

= 0 (5.47)

where we have set T = 0. One solution of the second equation is N

0

= 0,

but then the �rst equation form becomes identical to the one considered

earlier, and is known to fail for g < g

c

. So we choose the other solution,

where

m = 0

N

2

0

= 1� g

Z

�

d

d+1

p

(2�)

d+1

1

p

2

= 1�

g

g

c

(5.48)

It is satisfying to �nd that N

0

is non-zero precisely for g < g

c

, re-

inforcing our belief in the correctness of our procedure in �nding the

saddle point. Notice that N

0

vanishes as (g

c

� g)

1=2

as g approaches g

c

.

It is conventional to de�ne the critical exponent � by the dependence

N

0

� (g

c

� g)

�

, and we therefore have � = 1=2 in the present N = 1

theory. More generally, the scaling dimension of N

0

must be the same

as the scaling dimension of n, and we therefore have from (5.39) that

2� = (d+ z � 2 + �)�; (5.49)

an exponent relation that is satis�ed by the N =1 theory.

The above approach also determines the two-point correlator of spin

components orthogonal to the axis of the spontaneous magnetization.

We denote the corresponding susceptibility by �

?

(k; !), and it is the

Fourier transform of the n

2

, n

2

correlator (say); we have at N =1

�

?

(k; !) =

cg=N

c

2

k

2

� (! + i�)

2

(5.50)

Notice that there is a quasiparticle pole at ! = ck, and the energy of

this excitation vanishes as k ! 0. These are the spin-wave excitations

discussed earlier in the weak-coupling analysis. These spin waves survive
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uctuation corrections as k ! 0, although the nature of the spectral

density becomes di�erent at larger k, as we will discuss shortly.

As was the case on the disordered side, we need an energy scale to

characterize the ordered ground state, and its distance from the critical

point. A convenient choice is to build an energy out of the spin sti�ness,

�

s

. This quantity is a measure of how easy it is to make smooth changes

in the order parameter orientation. Imagine, if instead of the uniform

condensate hni = N

0

(1; 0; 0; 0; : : :) the system would choose on its own,

we constrain the magnetization to precess smoothly in the 1 � 2 plane

(say)

hni = N

0

(cos'(x); sin'(x); 0; 0; : : :) (5.51)

where '(x) is a very slowly varying function of x. A constant '(x)

cannot change the ground state energy of the constrained system, so the

change in energy can depend only r'(x). By inversion symmetry in x,

the change cannot be linear in r', and so the lowest order term in the

change in energy has to be of the form

�E =

�

s

2

Z

d

d

x(r')

2

(5.52)

The coe�cient appearing in the expression above is de�ned to be the spin

sti�ness �

s

. We emphasize that this sti�ness is de�ned by changes in the

ground state energy, and will always be assumed to be a T = 0 quantity,

unless otherwise stated. The dimension of the sti�ness under the scaling

transformation of the g = g

c

point can now be easily deduced. The angle

' is a variable with period 2�, and therefore has both engineering and

scaling dimension 0. By de�nition we have dim[�E] = z, and therefore

dim[�

s

] = d+ z � 2 (5.53)

We can now construct the energy scale, which we denote �

�

, which

characterizes the ground state for g < g

c

. The requirement is that �

�

should have scaling dimension z, and physical units of (time)

�1

. Such an

object has to made out of powers of �

s

, whose scaling dimension is above,

and whose physical units are (length)

2�d

(time)

�1

, and the velocity c,

whose scaling dimension is 0 and physical units (length)(time)

�1

; the

unique combination is

�

�

� (�

s

=N)

1=(d�1)

c

(d�2)=(d�1)

: (5.54)

The factor of N has been chosen for future convenience.

Knowledge of the spin sti�ness allows us to make an exact statement
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on the form of the static transverse susceptibility �

?

(k; 0) in the limit

k ! 0. This susceptibility is the response of the system to a very slowly

varying static �eld, h(x), which couples linearly to the 2 component

(say). The system will respond to such an external �eld by a slowly

varying shift in the angular orientation of the order parameter, and the

net energy cost will then be

�E =

Z

d

d

x

h

�

s

2

(r')

2

� hN

0

sin'

i

(5.55)

Minimizing the energy cost with respect to variations in ' we get in

Fourier space

hn

2

(k)i � N

0

'(k)

=

N

2

0

�

s

k

2

h(k): (5.56)

This gives us the exact result

lim

k!0

�

?

(k; 0) =

N

2

0

�

s

k

2

(5.57)

Combining the N =1 results (5.48,5.50) with (5.57), we have

�

s

= cN

�

1

g

�

1

g

c

�

(5.58)

In general, from (5.53), �

s

is expected to vanish as (g

c

� g)

(d�1)�

, and

the result (5.58) is consistent with the N =1 values of the exponents.

We conclude this subsection by remarking on two features of the re-

sponse functions of the ordered ground state which depend upon having

a non-zero �, and are therefore absent in the N =1 theory. First, from

(5.57), we deduce that the residue at the spin-wave pole (for k ! 0) is

N

2

0

=�

s

; as g approaches g

c

, this vanishes as (g

c

� g)

��

, unlike the re-

sult (5.50) in which the spin-wave residue remains non-zero all the way

up to g

c

. Second, with energy scale �

�

in hand, we can also de�ne a

corresponding length scale �

J

�

J

=

c

�

�

: (5.59)

This is known as the Josephson length. The forms (5.57) and (5.50),

which are characteristic long-wavelength transverse responses of a phase

with spontaneously broken continuous symmetry, remain valid at length

scales larger than �

J

, and times longer than �

�1

�

. At shorter scales, the

responses crossover to the isotropic response of the critical points like in

(5.41).
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g

CONTINUUM
HIGH T

T

LOW T

0
0

Quantum paramagnet

Fig. 5.1. Large N phase diagram for the O(N) rotor model in d = 1. This

phase diagram applies for all N � 3. The dashed lines are crossovers. Our

interest is in the two universal regions, which are the low and high T limits of

the continuum quantum �eld theory. The crossover boundary is at T � �

+

�

exp(�2�=g).

5.4 Nonzero temperatures

We have shown in the previous section that (for d > 1) there are two

distinct ground states separated by a quantum critical point at g = g

c

,

and each ground state is characterized by a single energy scale �

+

or

�

�

which vanishes as jg� g

c

j

z�

near the critical point (in d = 1 we only

have one phase characterized by �

+

).

We can combine the insights gained from the solution of the Ising

chain in Chapter 4 with some simple physical considerations, and also

by partly anticipating some N = 1 results to be discussed below, and

sketch the T > 0 phase diagrams in Figs 5.1-5.3.

First we show the phase diagram for d = 1 in Fig 5.1 [253]. There is

only one phase in d = 1: a quantum paramagnetic ground state with a

gap �

+

. The energy scale �

+

is the only one characterizing the universal

physics, and therefore we expect a qualitative change in the nature of

the physics at T � �

+

� exp(�2�=g) (using (5.28)). We identify the

region T < �

+

as the low temperature limit of the continuum theory,

which will be similar to the low T region on the quantum paramagnetic

side of the Ising model in Fig 4.3. The region �

+

< T < J is the high

temperature limit of the continuum theory: it di�ers from the high T

region of the Ising chain in Fig 4.3, as we will see in the next chapter, by

the presence of logarithmic corrections which modify some key dynamic

properties and their physical interpretation. Finally there is a lattice
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g

Magnetic long-range order

CONTINUUM
    HIGH T

T

g
c

0

Quantum paramagnet

LOW TLOW T

Fig. 5.2. Large N phase diagram for the O(N) rotor model in d = 2. As in

Fig 5.1, this is expected to apply for all N � 3, and the lower dashed lines are

crossovers determined by the conditions �

�

� T . As g approaches the critical

coupling g

c

, �

+

� (g� g

c

)

z�

for g > g

c

, and �

�

� (g

c

� g)

z�

for g < g

c

. The

physical interpretation of the regimes is identical to those for the Ising chain

in Fig 4.3. As in Fig 4.3, there is also an additional, non-universal, lattice

high T region for T > J which is not shown here.

high T region, T > J , (not shown in Fig 5.1) where microscopic details

matter: this region shall not be of interest to us here.

Turning next to d = 2, we show the anticipated largeN phase diagram

in Fig 5.2. The crossover phase boundaries and the physical interpreta-

tions of the regimes are essentially identical to those for the Ising chain in

Fig 4.3. There is an ordered magnetic state at T = 0, but the long-range

order disappears at any non-zero T . This is similar to the Ising chain,

but the physics behind the destruction of long-range order by thermal


uctuations is quite di�erent and will be discussed in more detail in the

subsequent chapters.

Finally we also consider the large N limit for 2 < d < 3 in Fig 5.3.

Although these dimensions are unphysical, it is still useful to examine

these cases as we can deal with systems whose long-range order survives

until a non-zero temperature. Also the behavior for the physical cases

N = 1; 2, d = 2 is quite similar to these large N limits. The non-zero

T phase transition is within the region T < �

�

, and the nature of the

singularity in its vicinity will be discussed below.

The crossovers in these phase diagrams can be described by scaling

functions closely analogous to (4.56). It is more convenient to work in

frequency and wavevector space, and we can obtain the scaling form
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T

g
g

0

MAGNETIC
LONG RANGE
ORDER

c

CONTINUUM
    HIGH T

LOW T

Quantum paramagnet

Fig. 5.3. Large N phase diagram for the O(N) rotor model with 2 < d < 3.

Qualitative features of the phase diagram apply for N > 2 and 2 < d < 3, or

1 � N � 2 and 2 � d < 3. The dashed lines are crossovers determined by

�

�

� T (�

�

� jg�g

c

j

z�

), while the full line is the locus of �nite temperature

phase transitions with T

c

given by (5.86). There is true magnetic long-range

order at all temperatures below the full line. The shaded region is where the

reduced classical scaling functions apply.

by arguments similar to those used to obtain (4.56). First, we can

use the de�nition (5.2) and the scaling dimension (5.39) to conclude

dim[�(k; !)] = 2dim[n] � d � z = �(2� �). Then recalling dim[T ] = z,

we can obtain the scaling form

�(k; !) =

Z

T

(2��)=z

�

�

�

ck

T

1=z

;

!

T

;

�

�

T

�

(5.60)

where the upper (lower) sign applies for g � g

c

(g � g

c

). Also it should

be clear that in d = 1 only the upper sign can apply. The functions �

�

are completely universal and complex-valued, and are chosen to have

�nite limits at all k and ! as �

�

! 0 at �xed T (there is an exception

to this in d = 1, where, as will shall see in Chapter 6, the function

�

+

diverges logarithmically as �

+

=T ! 0; this logarithm divergence

is however absent in the present N = 1 theory). There are strong

restrictions that arise from the consistency of the two functions as they

approach the common point g = g

c

from the two sides; not only their
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values must agree, but also the fact that �(k; !) must be analytic as a

function of g at g = g

c

for T > 0 places many additional restrictions

(the reasons for this analyticity, and its consequences will be discussed

in more detail in Section 8.2.1). For the Ising chain we were able to

work with a single function by de�ning a � = �

+

> 0 for g � g

c

and

� = ��

�

< 0 for g � g

c

, but this is di�cult to do in the present case

as the de�nitions of �

�

are quite di�erent. Also, for the Ising chain, �

was a simple, analytic linear function of g, so the analyticity requirement

was simply that � was analytic as a function of � at � = 0.

The prefactor Z is a non-universal constant which is non-singular at

the T = 0 quantum critical point. It can be de�ned through (5.60) by

relating it to some observable which depends upon the scale of the order

parameter �eld. For g > g

c

, we can, by demanding that the form of

�(k; !) near the quasi-particle pole at T = 0 in (5.30) (which holds even

beyond N = 1, as we saw in the Ising chain) be consistent with the

scaling form (5.60), specify

Z = (constant)

A

�

�=z

+

: (5.61)

The constant can be chosen at our convenience, and merely changes the

de�nition of the �

�

. Alternatively, we could approach the critical point

from g < g

c

and use (5.57) to de�ne

Z = (constant)

N

2

0

c

2

�

s

�

�=z

�

: (5.62)

A similar scaling form can be written down for the uniform suscepti-

bility from the knowledge of the scaling dimension in (5.43):

�

u

=

T

d=z�1

c

d

�

u�

�

�

�

T

�

: (5.63)

Unlike, (5.60), there is no non-universal prefactor like Z in front: this

is because the unknown �eld scale, and the anomalous exponent � does

not appear in the de�nition of �

u

: rather it is related by (5.3) to the

free energy density.

The remainder of this section will present explicit results for these

scaling functions at N = 1. In this limit, the expressions in (5.22)

and (5.23) specify � and �

u

respectively. These are consistent with the

scaling forms (5.60) and (5.63) for � = 0 and z = 1, if the Lagrange
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multiplier m satis�es

m = TF

�

�

�

�

T

�

(5.64)

where F

�

are universal functions which will be obtained from the solu-

tion of (5.21), as we shall show below. The resulting predictions for the

physical properties at T > 0 are quite simple. By Fourier transforming

(5.22), we see that m=c is the correlation length. The imaginary part of

(5.22) also implies that there is a gap in the spectrum equal to m. This

feature is an artifact of the N =1 limit: the response of any interacting

system at T > 0 has a non-zero spectral density at all frequencies (in cer-

tain cases, the response could vanish above some large ultraviolet cuto�

� c�), as there are essentially no restrictions on the set of frequencies

at which all the possible thermally excited states can absorb energy. A

prominent objective of the remaining chapters in Part 2 is to describe a

dynamical theory for the �lling in of this gap at �nite temperatures.

The uniform susceptibility is obtained by evaluating the frequency

summation in (5.23) by standard methods which the reader can �nd in

text books like Refs [146] and [321]; the result is

�

u

=

1

2T

Z

d

d

k

(2�)

d

1

sinh

2

(

p

c

2

k

2

+m

2

=2T )

; (5.65)

with m given by (5.64).

We now determine the universal functions F

�

, and will subsequently

turn to a description of the physics in the various regions of Fig 5.1-

5.3. The method used here introduces a number of useful tricks for the

extraction of universal, cut-o� independent crossover functions.

We present �rst the calculation on the disordered side g � g

c

. The

�rst step is to subtract from (5.21) the corresponding equation (5.24) at

the same coupling constants at T = 0; this gives us

Z

�

d

d

k

(2�)

d

T

X

!

n

1

c

2

k

2

+ !

2

n

+m

2

�

1

c

Z

�

d

d+1

p

(2�)

d+1

1

p

2

+ (�

+

=c)

2

= 0

(5.66)

where �

+

is the gap at the current value of g. A trick we shall often use

is to subtract from the summation over frequencies of any quantity, the

integration over frequencies of precisely the same function; so we rewrite

(5.66) as

Z

�

d

d

k

(2�)

d

 

T

X

!

n

1

c

2

k

2

+ !

2

n

+m

2

�

Z

d!

2�

1

c

2

k

2

+ !

2

+m

2

!
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+

1

c

Z

�

d

d+1

p

(2�)

d+1

�

1

p

2

+ (m=c)

2

�

1

p

2

+ (�

+

=c)

2

�

= 0: (5.67)

Now we use the general relation

T

X

!

n

1

!

2

n

+ a

2

�

Z

d!

2�

1

!

2

+ a

2

=

1

a

1

e

a=T

� 1

(5.68)

valid for any positive a (again this can be established by standard fre-

quency summation methods [146, 321]). Notice that the right-hand side

falls o� exponentially as a becomes large. This is a key property, and was

the reason for considering the combination in (5.68). Applying this iden-

tity to (5.67), we see that the �rst integration over k has an integrand

which is exponentially small for large k, and hence is quite insensitive

to � which can safely be sent to in�nity. The integration over p in the

second term is also ultraviolet convergent, again allowing � to be set to

in�nity. The resulting expression is then cuto� independent, and hence

universal; we obtain for d > 1

Z

d

d

k

(2�)

d

1

p

c

2

k

2

+m

2

1

e

p

c

2

k

2

+m

2

=T

� 1

�

X

d+1

c

d

�

m

d�1

��

d�1

+

�

= 0;

(5.69)

where the number X

d

was de�ned below (5.27). In d = 1, this equation

is modi�ed to

Z

dk

(2�)

1

p

c

2

k

2

+m

2

1

e

p

c

2

k

2

+m

2

=T

� 1

�

ln(m=�

+

)

2�c

= 0: (5.70)

The solution of these equations is clearly of the form (5.64); after rescal-

ing momenta by c=T in (5.69), we �nd that the function F

+

(s) is deter-

mined implicitly by solution of the equation

Z

d

d

k

(2�)

d

1

q

k

2

+ F

2

+

1

e

p

k

2

+F

2

+

� 1

�X

d+1

�

F

d�1

+

� s

d�1

�

= 0 (5.71)

for d > 1, and similarly for d = 1. We will discuss asymptotic features

of the solution of these equations in the subsections below. We note

here that precisely in d = 2, the equation (5.71) has a simple, explicit

solution [97]

F

+

(s) = 2 sinh

�1

�

e

s=2

2

�

d = 2: (5.72)

Now we turn to the ordered side, g � g

c

, which implicitly means that

we have d > 1. We assume that T is large enough that the magnetization

is zero; the case of the magnetized state with T 6= 0 can be treated
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similarly, and will be referred to below. Subtract from (5.21), the value

of �

s

=N in (5.58), and insert the value of 1=g

c

in (5.25). Evaluating the

frequency summation as above we �nd

Z

d

d

k

(2�)

d

1

p

c

2

k

2

+m

2

1

e

p

c

2

k

2

+(m=c)

2

=T

� 1

+

1

c

Z

d

d+1

p

(2�)

d+1

�

1

p

2

+m

2

�

1

p

2

�

=

�

s

Nc

2

: (5.73)

The solution of this is also in the form (5.64), and the function F

�

(s) is

given by

Z

d

d

k

(2�)

d

1

q

k

2

+ F

2

�

1

e

p

k

2

+F

2

�

� 1

�X

d+1

F

d�1

�

� s

d�1

= 0: (5.74)

Again, there is a simple explicit solution in d = 2 [97]

F

�

(s) = 2 sinh

�1

�

e

�2�s

2

�

d = 2 (5.75)

With expressions for the crossover functions F

�

in hand, let us discuss

the physical properties of the system in di�erent regimes of the g, T ,

plane for di�erent values of d.

5.4.1 Low T on the quantum paramagnetic side, g > g

c

,

T � �

+

The discussion here also applies in d = 1.

Properties of this phase are essentially identical to those of the low T

quantum paramagnetic region of the Ising model in Section 4.5.2. The

ground state has a gap, and non-zero T induces an exponentially small

density of thermally excited triplet magnons. For the parameter m we

have

m = �

+

+O(e

��

+

=T

): (5.76)

So there is a �nite correlation length c=m which has exponentially small

corrections from its T = 0 value c=�

+

. The N = 1 expression (5.22)

has a quasi-particle peak that remains in�nitely sharp at T > 0: this

is clearly incorrect for �nite N , as damping must be present, and will

be described in subsequent chapters. The uniform susceptibility can be

computed from (5.65), and we �nd that it is exponentially small

�

u

= O(e

��

+

=T

): (5.77)
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5.4.2 High T , T � �

+

;�

�

Again properties are the similar to those of the continuum high T region

of the Ising chain as discussed in Section 4.5.3. Now we have, for d > 1

m = TF

+

(0) = TF

�

(0) (5.78)

where F

+

(0), F

�

(0) are pure numbers. This represents a correlation

length � c=T . In d = 1, the correlation length has an additional loga-

rithmic correction [253], as can be seen from the solution of (5.70)

m =

�T

ln(CT=�

+

)

; (5.79)

where

C = 4�e

�


= 7:055507955 : : : : (5.80)

In a similar manner we �nd for the uniform susceptibility from (5.65)

that in d > 1

�

u

=

T

d�1

c

d

�

u+

(0) =

T

d�1

c

d

�

u�

(0); (5.81)

where �

u�

are universal pure numbers which can be determined by

solutions of (5.65) and (5.69); in d = 2 we have the simple result

�

u�

(0) = (

p

5=�) ln((

p

5 + 1)=2). Again, in d = 1 there are log cor-

rections [253]

�

u

=

1

�c

ln(CT=�

+

) (5.82)

which will be better understood in the following chapter.

By analogy with the Ising chain we expect that the dynamics is quan-

tum relaxational with a phase coherence time � 1=T . However damping

and relaxation are completely absent at N = 1 and will be further

discussed later.

5.4.3 Low T on the magnetically ordered side, g < g

c

, T � �

�

This section applies only for d > 1, as there is no such region for d = 1.

The properties in d = 1 will be analogous to the low T ordered region of

the Ising chain in Section 4.5.1, but there will be important di�erences

for 2 < d < 3.

Let us assume �rst that T is large enough so that hni = 0 and so

(5.74) can be used to determine F

�

. For d = 2, one �nds that there is a
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solution of (5.74) for all T , and even as T ! 0 (s = �

�

=T ! 1). We

�nd that as T ! 0

m = T exp(�2��

�

=T ) = T exp(�2��

s

=NT ): (5.83)

So the correlation length � c=m diverges as T ! 0, but remains �nite

for all non-zero T . This was exactly the situation as in the Ising chain,

and the phase diagram for this model is therefore as shown in Fig 5.2.

We will see in subsequent chapters that, as in the case of the Ising chain,

because of the very large correlation length, it is possible to develop an

e�ective classical dynamical model of the system, and to express the

result in terms of reduced scaling functions. Let us also note (from

(5.65)) that the uniform susceptibility in d = 2 is given as T ! 0 by

�

u

=

2�

�

c

2

=

2�

s

Nc

2

: (5.84)

This is actually an exact result even for �nite N , as we will see later.

Now let us consider the case 2 < d < 3. Although there is no physical

dimension in this region, the results obtained below will apply in d = 3

with cuto�-dependent logarithmic corrections we do not want to discuss

here. Further, the physics of the quantum Ising model in d = 2 is

expected to be similar to that of the large N solution with 2 < d < 3.

The key observation in this case is that there is no solution of (5.74) for

F

�

(s) above a critical value s = s

c

, where F

�

(s

c

) = 0. The value of s

c

is given by

s

d�1

c

=

Z

d

d

k

(2�)

d

1

k

1

e

k

� 1

=

2�(d� 1)�(d � 1)

�(d=2)(4�)

d=2

: (5.85)

Just as was the case in the T = 0 analysis at the beginning of Section 5.3,

the absence of a solution for the Lagrange multiplierm (related to F

�

(s)

by (5.64)) implies that there must be magnetic order for s > s

c

This

de�nes a critical temperature T

c

given precisely by

T

c

� �

�

=s

c

(5.86)

such that the system is in the paramagnetic phase only for T > T

c

: the

resulting phase diagram is shown in Fig 5.3. There is a �nite tempera-

ture phase transition at T = T

c

, and a magnetically ordered phase for

T < T

c

. As T approaches T

c

, the conventional classical phase transition

theory becomes applicable in the region jT � T

c

j � T

c

. The classical
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scaling functions of this transition emerge as reduced scaling functions

of the quantum functions, in a manner very similar to the discussion

on the quantum Ising chain in Section 4.5.1. One consequence of this

behavior is that all the scale factors of the classical scaling functions,

which are usually considered non-universal, are universally determined

by the parameters �

�

, c, and N

0

of the quantum crossover functions.

We have already seen an example of this in (5.86), where T

c

was univer-

sally determined by �

�

[427].

Let us explicitly observe the collapse of the scaling function (5.64) in

this classical region. As the primary quantum crossover function has

only one argument, the reduced function would have no arguments, �.e.,

it is a pure power law. Indeed, solution of (5.74) for s close to but above

s

c

gives us

m = T

c

��

T � T

c

T

c

�

(d� 1)s

d�1

c

X

d

�

1=(d�2)

: (5.87)

The correlation length c=m diverges with the classical exponent �

c

=

1=(d� 2) with an amplitude that is universal.

The above is part of a very general lesson. Quantum critical scal-

ing forms like (5.60) hold everywhere in the vicinity of the quantum

critical point, including at or close to any �nite temperature phase tran-

sition lines that may be approaching the quantum critical point. The

classical critical singularities of these �nite temperature transition ap-

pear as singularities of the quantum critical scaling function. Further,

the amplitudes of the classical transitions, which are normally non-

universal, become universal when expressed in terms of the arguments

of the quantum-critical scaling function.

5.5 Applications and extensions

We have already mentioned application to double-layer antiferromagnets

in Section 5.1.1.1.

We indicated in Section 5.1.1.1 that the O(3) quantum rotor model de-

scribes a large class of Heisenberg antiferromagnets, and this connection

will be established more generally in Chapter 13. Here we will discuss

application of rotor model results to thermodynamic measurements of

the uniform spin susceptibility, �

u

, of quantum antiferromagnets; impli-

cations for other physical properties of antiferromagnets will be noted

in subsequent chapters. The rotor model predictions for �

u

are given by
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(5.65) in the large N limit, but computations with 1=N corrections are

also available [96, 97].

The S = 1=2 square lattice antiferromagnet, found in the parent

insulating compounds of the high temperature superconductors (like

La

2

CuO

4

), has its low energy properties described by the O(3) quantum

rotor model [83]. Very accurate results for the thermodynamic proper-

ties of the former model have been obtained in precision Monte Carlo

computations by Kim and Troyer [269]. In particular they obtained

the T dependence of the uniform susceptibility, �

u

, for a wide range of

temperatures; experimental measurements of �

u

on La

2

CuO

4

are also

available [252], but these are of lower precision than the numerical data,

and as it is practically certain that La

2

CuO

4

is a square lattice antifer-

romagnet, it is appropriate to use the numerical data. For T � �

s

their

measurements are in good agreement with universal low temperature

response of the continuum rotor model in (5.84) (the correction of order

T=�

s

to (5.84) will be derived later in (7.25) [97, 218], and this was used

in the comparisons with the numerical data in Ref [269]). At larger T

they observe a clear crossover which is in good agreement with the con-

tinuum high T behavior in (5.81) (the leading 1=N and �

s

=T computed

corrections [97] to (5.81) were used in this comparison). This evidence

supports the proposal, made in Ref. [96], that the S = 1=2 square lattice

antiferromagnet is close enough to a quantum critical point to display

the continuum high T behavior of Fig 5.2 at higher temperatures.

The low energy properties of a double-layer model of two S = 1=2

square lattice antiferromagnets coupled to each other are also described

by O(3) quantum rotor model, as should be clear from the discussion in

Section 5.1.1.1. Moreover, by changing the ratio of exchange couplings

in this model it is possible to tune the rotor model coupling g through

g

c

T [329, 342]. There have been a number of studies of the double-layer

antiferromagnet near this critical point [443, 444, 330, 175, 136, 498, 331],

and the numerical results for �

u

are in good agreement with the (5.81)

and its 1=N corrections [97].

Normand and Rice [366, 367] have proposed an interesting recent ex-

perimental realization of the quantum critical point of the d = 3 quan-

tum rotor model in LaCuO

2:5

. This is a spin-ladder compound in which

the ladders are moderately coupled in three dimensions. By varying the

ratio of the intra-ladder to inter-ladder exchange it is possible to drive

such an antiferromagnet across a d = 3 quantum critical point separating

N�eel ordered and quantum paramagnetic phases. The uniform suscepti-

bility has a T

2

dependence at intermediate T , which is characteristic of
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the \High T" dependence in (5.81) in d = 3. The entire T dependence

of �

u

has been computed in Monte Carlo simulations of an S = 1=2 an-

tiferromagnet on the LaCuO

2:5

lattice [500] and the results are in good

agreement with quantum rotor model computations like those discussed

here.



6

The d = 1, O(N � 3) rotor models

As we noted in the preface, this and the following chapter are at a more

advanced level, and some readers may wish to skip ahead to Chapter 8.

In Chapter 5 we studied the O(N) quantum rotor model in the large

N limit for a number of values of the spatial dimensionality, including

d = 1. We noted that the results provided an adequate description of

the static properties in d = 1 for N � 3: this will be justi�ed in the

present chapter where we will obtain a number of exact results for the

same static observables. We also noted that the large N limit did a very

poor job of describing dynamical properties at nonzero temperatures:

this will be repaired in this chapter by simple physical arguments which

lead to a fairly complete (and believed exact) description of the long-

time behavior. Some of the discussion in this chapter will be specialized

to the O(N = 3) model, which is also the case of greatest physical

importance; the properties of the O(N > 3) models are very similar,

and many of our results will be quoted for general N . Of the remaining

cases, the d = 1, N = 1 model has been already considered in Chapter 4,

and study of the d = 1, N = 2 model is postponed to Section 14.3.

The physical picture of the T = 0, N = 3 state which emerged in

Chapter 5 was very simple. The ground state was a quantum paramag-

net which did not break any symmetries. There was an energy gap, �

+

,

above the ground state, and the low-lying excitations were a triplet of

particles with dispersion "

k

=

q

c

2

k

2

+�

2

+

; this picture will be veri�ed

here by a more complete renormalization group analysis in Section 6.1.

These triplet particle excitations lead to a quasi-particle pole in the dy-

namic susceptibility �(k; !), which has the form (5.30) near the pole.

This form contains the quasiparticle residue, A, which sets the overall

scale of the order parameter �eld.

135
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g

QUASI-CLASSICAL
        WAVES

T

QUASI-CLASSICAL
     PARTICLES

0
0

Fig. 6.1. Crossover phase diagram of the d = 1, N � 3 rotor model (5.1,5.16)

as a function of the temperature and the coupling g. The continuum theory

description fails above some T , as in Fig 4.3, but this has not been indicated.

The quasi-classical particle model is developed in Section 6.2, while the quasi-

classical wave model is discussed in Section 6.3.

Turning next to non-zero temperatures, we obtained the crossover

phase diagram shown in Fig 5.1, a modi�ed version of which has been

reproduced in Fig 6.1. The primary purpose of this chapter is to give a

fairly complete description of the dynamical properties in the two uni-

versal regions of Fig 5.1 and 6.1: these are the low T (T � �

+

) and high

T (�

+

� T � J) regions of the continuum quantum �eld theory. As

indicated in Fig 6.1, the dynamics of the low T region will be described

by an e�ective model of quasi-classical particles in Section 6.2, closely

related to the particle model developed in Section 4.5.2 for the Ising

chain. For the high T region, we will develop a new, `dual', description

in a model of quasi-classical waves , which shall be introduced in Sec-

tion 6.3. As indicated in Section 5.1.1.1, and discussed more extensively

in Chapter 13, the d = 1, O(3) rotor model describes a large class quan-

tum spin chains. The low T regime of Fig 6.1 will be applicable to all

such spin chains, while the high T , quasi-classical wave regime applies

only if the continuum quantum �eld theory description for the lattice

model holds at these elevated temperature|the precise restrictions this

imposes are discussed in Ref [69], but will not be entered into here.

As we noted in Chapter 5, the dynamic susceptibility, �(k; !) in the

regions of Fig 6.1 is completely determined by the parameters A, c, and

�

+

, and obeys the scaling form (5.60) with � = 0, z = 1. The uniform

susceptibility, �

u

, depends only on �

+

and c as shown in (5.63). We

shall also examine here an important new observable which characterizes

the transport of the conserved angular momentum of the rotor model in
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space: this is the spin di�usion constant, D

s

. To compute this we will

need spacetime dependent correlation functions of the angular momen-

tum density L(x; t) (for a lattice model with spacing between sites, a,

the continuum �eld L(x

i

; t) =

^

L

i

(t)=a); by analogy with (5.2) we de�ne

C

u;��

(x; �) � hL

�

(x; �)L

�

(0; 0)i

�

u;��

(k; !

n

) �

Z

1=T

0

Z

dxC

u;��

(x; �)e

�i(kx�!

n

�)

: (6.1)

Computations in this chapter will show that �

u;��

has the following

form at small k and !

�

u;��

(k; !) = �

��

�

u

D

s

k

2

�i! +D

s

k

2

: (6.2)

For simplicity, we have set the external �eld H = 0: this will be done

throughout this chapter, although it is not di�cult to extend the results

to a small H 6= 0. The relationship (6.2) de�nes the value of the spin

di�usion constant D

s

. Actually the structure of (6.2) is a very general

consequence of the conservation of L, as we shall see in Chapter 9, and

has been discussed in considerable detail in the book by Forster [161].

Notice that the static uniform susceptibility is de�ned by

�

u

� lim

k!0

lim

!!0

�

u

(k; !); (6.3)

and the order of limits is important. It should also be clear that the full

wavevector and frequency dependent �

u

(k; !) obeys a scaling form quite

analogous to (5.63): one simply adds additional arguments of !=T and

ck=T

1=z

to (5.63). This in turn implies a scaling form for D

s

D

s

= c

2

T

�2=z+1

�

D

s

�

�

+

T

�

; (6.4)

therefore, as we shall see in this chapter, the T dependence of D

s

is

also completely and universally speci�ed by the values c and �

+

in the

regions of Fig 5.1.

6.1 Scaling analysis at zero temperature

This section will brie
y review a well-known argument [389, 65, 362] that

the large N result for the T = 0 gap in (5.28), �

+

� c�exp(�2�=g) is

basically correct for all N � 3.

Our method will be to examine the behavior of the coupling g under

a scaling transformation of the theory (5.16) at H = 0. We considered
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scaling transformations earlier in Section 4.3 where we examined the

behavior of the simple free �eld theory H

F

, (4.41), describing the Ising

chain. The procedure is as before: consider the continuum theory (5.16)

with a upper momentum cuto� �, �rst integrate out the degrees of

freedom between � and �e

�`

, and then perform the rescaling (4.46) to

restore the cuto� to its original value. Finally we compare the relative

values of the couplings before and after the transformation, and this

allows us to extract a great deal of information. For the case of the

Ising theory, (4.41), the �rst step was quite innocuous: (4.41) describes

a free �eld theory, and integrating out high momentum modes merely

multiplied the partition function by an overall constant. In contrast, we

will �nd here that this step plays a crucial role in the scaling analysis of

(5.16).

We will integrate out the degrees of freedom at momentum scales

between �e

�`

and �e

`

by the background �eld method of Polyakov [389,

390]. Let n

<

(x; �) represent a `background' con�guration of �elds with

wavevectors less than �e

�`

. The 
uctuations in the scales between �e

�`

and � must not violate the constraint n

2

= 1, and can therefore be

parameterized by theirN�1 components along the directions orthogonal

to n

<

(x; �). Speci�cally, we write

n(x; �) =

p

1� �

a

�

a

n

<

(x; �) +

N�1

X

a=1

�

a

e

a

(x; �) (6.5)

where ~� is a N � 1 component �eld with wavevectors between �e

�`

and

�e

`

, and e

a

(x; �), n

<

(x; �) are N mutually orthogonal unit vectors in

the N -dimensional rotor space. We insert (6.5) into (5.16) and expand

the resulting action in powers of ~� at H = 0: this gives the spatial

gradient terms

cN

2g

�

(rn

<

)

2

(1� �

a

�

a

) + (r�

a

)

2

+ �

a

�

b

re

a

� re

b

+ 2�

a

r�

b

e

b

� re

a

�

(6.6)

and also time derivative terms with an identical structure. Terms linear

in � do not appear because they vanish upon spatial integration, as the

momenta carried by the �

a

is di�erent from those of the background

�elds. Now the �

a

�elds are integrated out, and all terms containing up

to two derivatives of the background �elds are retained in the results.

This results in an e�ective action for the �elds n

<

and e

a

; after using

the orthonormality condition between these �elds, all explicit depen-

dence upon the e

a

disappears, and the action for the n

<

has precisely
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the form of (5.16) but with a modi�ed coupling g

0

. Finally, we per-

form the rescaling (4.46)|this has no e�ect on the coupling g, which

is dimensionless in d = 1. We have now completed the required scaling

transformation and it maps the original coupling g to a new coupling g

0

given by

1

g

0

=

1

g

�

c(N � 2)

N

Z

�

�e

�`

dk

�

Z

d!

2�

1

c

2

k

2

+ !

2

+O(g) (6.7)

The integrals in (6.7) can be easily carried out, and we can then represent

the e�ects of successive application of this transformation (as in (4.48))

by the di�erential equation

dg

d`

=

N � 2

2�N

g

2

+O(g

3

) (6.8)

This is a key 
ow equation which will help us understand the properties

of (5.16) at small g. By integrating (6.8) we can easily see that a system

with a small initial value of g will 
ow into a system with a g of order

unity at a scale

` =

2�N

(N � 2)g

+O(g

0

) (6.9)

where the coe�cient of the leading g

�1

term does not depend upon the

value of the order unity constant chosen, but that of the O(g) term

does. Now we expect from the strong-coupling analysis of (5.1.1) that

a system with a g of order unity, will have a gap �

+

of order its cuto�

c�

0

. Undoing the rescaling transformation (4.46), we know that the

original cuto� � is related to the new cuto� by �

0

=� = e

�`

� �=c�,

and therefore from (6.9)

ln

�

c�

�

+

�

=

2�N

(N � 2)g

+O(g

0

); (6.10)

where again, the uncertainty in the precise value of �

+

relative to �

0

does not modify the leading g

�1

term. This result has precisely the same

form as the large N result (5.28), establishing our earlier claims on the

correctness of the large N theory for static and equal-time properties|

the only change in the present exact treatment has been the replacement

of �

+

� c�exp(�2�=g) by �

+

� c�exp(�2�N=(N � 2)g). This also

shows that the large N results breakdown badly at N = 2, but are quite

reasonable for N � 3.

We have been rather sloppy in the above discussion about various con-

stants of order unity. It is possible to be quite precise about these using a
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more sophisticated �eld-theoretic renormalization group analysis, which

we will discuss later in this chapter.

6.2 Low temperature limit of continuum theory, T � �

+

This T > 0 region was shown in Figs 5.1 and 6.1. All of the analysis of

this section will be specialized to N = 3, although the generalization to

other N � 3 is straightforward.

The approach followed [433, 117] for T � �

+

is very similar to that

taken for the corresponding low T region on the quantum paramagnetic

side of the Ising chain in Section 4.5.2. The central di�erence here is

that the quasi-particle excitations are triplets, and therefore have an

additional spin label, m = �1; 0; 1. This label is associated with the

eigenvalues of the conserved total angular momentum, and leads to im-

portant qualitative di�erences which will be discussed below.

There are two key observations that allow our computation for T �

�

+

. The �rst, as in the Ising chain, is that the density of thermally

excited particles is so low, that they can be treated, when well separated,

as classical particles. In particular, as their density � e

��

+

=T

, their

mean spacing � e

�

+

=T

is exponentially large at low T . On the other

hand, their thermal velocities are also small at low T , and so their typical

wavelength becomes large; however the divergence of the thermal de

Broglie wavelength is only � c=

p

T�

+

and is therefore much smaller

than the particle spacing at low enough T . The density of particles with

each spin m (m = �1; 0; 1 for N = 3), �

m

is given by the expression

(4.81), and the total density, � therefore equals �

1

+ �

0

+ �

�1

, which is

� = 3

�

T�

+

2�c

2

�

1=2

e

��

+

=T

: (6.11)

This classical picture also allows us to simply obtain the value of the

uniform susceptibility �

u

. In the presence of a �eld, the energy of a

particle with spin component m simply acquires the Zeeman shift of

�mH . This implies that in a �eld �

m

! �

m

e

mH=T

; expanding to linear

order in the �eld we obtain [501, 499, 433]

�

u

=

2�

3T

=

1

c

�

2�

+

�T

�

1=2

e

��

+

=T

: (6.12)

Let us think about the dynamics of these classical particles. While

well-separated particles behave classically, in one dimension these par-

ticles are forced to collide with their near neighbors, and cannot avoid
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x

t

m2

m2

m1

m1

Fig. 6.2. Two particle collision described by the S matrix (6.13). The mo-

menta before and after the collision are the same, so the �gure also represents

the spacetime trajectories of the particles.

each other even in the extremely dilute limit. The collision must clearly

be treated quantum mechanically, and we therefore need the two-particle

S matrix. Because of the presence of the particle labels m, this S matrix

can be a rather complicated object, and not simply a pure phase-factor,

as was the case in the Ising chain. Fortunately, we don't need the full S

matrix, but only its value in the limit of vanishing momenta|the par-

ticles have thermal velocities which vanish, as noted above, in the low

T limit as v

T

= c(T=�

+

)

1=2

. Furthermore, this zero-momentum S ma-

trix turns out to have remarkably `super-universal' structure in d = 1.

For the process shown in Fig 6.2, the S matrix in the limit of vanishing

momenta is

S

m

1

m

2

m

0

1

;m

0

2

= (�1)�

m

1

m

0

2

�

m

2

m

0

1

: (6.13)

In other words, the excitations behave like impenetrable particles which

preserve their spin in a collision. As in the Ising chain, energy and

momentum conservation in d = 1 require that these particles simply

exchange momenta across a collision (Fig 6.2). This result can be ob-

tained in a variety of ways which are explored in some detail in Ref [117].

The simplest is to compute it in the strong-coupling expansion of Sec-

tion 5.1.1: one solves the two-particle Schr�odinger equation order-by-

order in 1=g, and �nds that (6.13) holds at each order. Alternatively

one can take the low-momentum limit of the exact S matrix obtained

by Zamolodchikov and Zamolodchikov [543] for the continuum theory

(5.16), and �nd that (6.13) is valid. The �rst method shows that (6.13)

holds even for lattice models, and is not a special property of continuum

relativistic theories. Indeed, (6.13) holds for practically every d = 1

model with a gap, and excitations which have a quadratic dispersion at

low momenta; exceptions arise only in specially �ne-tuned cases when
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x

t

1

1

1
0

0

0

0

0

0

0

-1

-1

-1

-1

Fig. 6.3. A typical set of particle trajectories contributing to C(x; t). Each

trajectory represents paths moving both forward and backward in time, and

the (�1) phase at each collision is neutralized by its time-reversed contribu-

tion. The particle co-ordinates are x

k

(t), with the labels k chosen so that

x

k

(t) � x

l

(t) for all t and k < `. Shown on the trajectories are the values of

the particle spins m

k

which are independent of t in the low T limit.

certain bound states happen to have exactly zero energy. The reasons

for the `super-universality' are explored in more detail elsewhere [117],

but the underlying physics can be seen to be a simple consequence of the

arguments made below (4.18) in Section 4.1.1. We argued there that to

a slowly moving particle, with a very long wavelength, any short-range

repulsive potential can be approximated by an impenetrable delta func-

tion (i.e., a potential u�(x) with u ! 1). The wavefunctions of the

two particles on either side of this potential therefore vanish as they

approach x = 0. Exchange of spin requires actual overlap of the wave-

function, which we have shown becomes negligible in the low momentum

limit. Hence the spins of the two particles are preserved and we have

the result (6.13).

We can now proceed to the computation of correlation functions. As

in Sections 4.5.1 and 4.5.2, we compute correlators as a `double time'

path integral, and in the classical limit, stationary phase is achieved

when the trajectories of the particles are time-reversed pairs of classical

paths as shown in Fig 6.3. Each trajectory has a spin label, m, which

obeys (6.13) at each collision. The label, m, is assigned randomly at

some initial time with equal probability, but then evolves in time as

discussed above (Fig 6.3). We label the particles consecutively from left

to right by an integer k; then their spins m

k

are independent of t, and

we denote their trajectories x

k

(t). The velocities of the particles are
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chosen independently at the initial time from the classical Boltzmann

distribution P (v):

P (v) =

�

�

+

2�c

2

T

�

1=2

exp

�

�

�

+

v

2

2c

2

T

�

(6.14)

We will �rst discuss evaluation of the correlations of the conserved

angular momentum density, C

u;��

, de�ned in (6.1); this has no analog

in the Ising case, as the latter model did not have a conserved charge

associated with a continuous symmetry. In the absence of an external

�eldH, this correlator will be rotationally invariant, and it is convenient

to compute the correlator of the component of the angular momentum

whose eigenstates we labeled in Fig 6.3: we will therefore compute C

u;33

.

The operator L

3

has a particularly simple e�ect on the particle trajecto-

ries in Fig 6.3: it simply reports the azimuthal angular momentum of the

particle it is operating on, but does not create or annihilate any parti-

cles (this is evident from the strong-coupling expansion of Section 5.1.1).

We therefore only need to sum over the trajectories shown in Fig 6.3;

for these every collision has a time-reversed pair, and therefore the �1's

from the S matrix are completely neutralized. We are left then with

a purely classical ensemble of point particles labeled with three `colors'

(the azimuthal angular momentum). The observable L

3

(x; t) can be

written in this ensemble as

L

3

(x; t) =

X

k

m

k

�(x� x

k

(t)) (6.15)

We have to determine its correlators under average over a set of initial

conditions of random, uncorrelated values of m

k

and x

k

, and velocities

given by the distribution (6.14). In particular we have,

C

u;33

(x� x

0

; t� t

0

) =

X

k;k

0

hm

k

m

0

k

�(x� x

k

(t))�(x

0

� x

k

0

(t

0

))i

=

2

3

X

k

h�(x� x

k

(t))�(x

0

� x

k

(t

0

))i : (6.16)

In the second step (which is a crucial one) we have used the fact that

the x

0

k

and m

0

k

s are uncorrelated, and also that di�erent m

0

k

s are mu-

tually independent. We are now left with a well-de�ned problem in

classical statistical mechanics. Place point particles independently and

uniformly along an in�nite line with a density �. Give each an initial

velocity from the distribution (6.14). Tag a particle, k, and determine

its position autocorrelation function, averaged over the set of all possible



144 The d = 1, O(N � 3) rotor models

initial conditions: notice that such a particle tagging would seem quite

unphysical apriori, but we have shown above how it is a natural conse-

quence of the average over the spins m

k

. This tagged particle problem

can be solved exactly, as was �rst shown by Jepsen [251] and a little later

by Lebowitz and Percus [295]. The following paragraph will present the

exact evaluation of (6.16) using a method drawn from the latter authors.

The key to the solution is to notice that the trajectories in Fig 6.3 are

quite simple: they are simply straight lines. Let us label the straight

line `trajectories' (as opposed to the `particles') by the symbol �. Then

the �'th trajectory is simply

x

�

(t) = x

�

+ v

�

t (6.17)

where x

�

are the trajectory positions at t = 0, and v

�

are their velocities,

and both of these have to be averaged over. Now, at a given time t,

each trajectory � will `belong' to a particle k

�

(t), where k

�

is a rather

complicated integer-valued function of time. Its explicit expression is

k

�

(t) =

M

X

�

0

=1

�(x

�

(t)� x

�

0

(t)) (6.18)

where we have assumed there are a total of M trajectories (we will

send M ! 1 at a later stage), and �(x) is the unit step function. It

should be clear that (6.18) simply counts the trajectories to the left of a

given trajectory at a time t, and this identi�es the particle number. We

can now rewrite (6.16) as a sum over trajectories, rather than particle

number:

C

u;33

(x; t) =

M

X

�;�

0

=1

D

�(x � x

�

(t))�(x

�

0

)�

k

�

(t);k

�

0

(0)

E

=

M

X

�;�

0

=1

Z

2�

0

d�

2�

*

�(x� x

�

(t))�(x

�

0

)

�e

i

P

�

00

(

�(x

�

(t)�x

�

00

(t))��(x

�

0

�x

�

00

)

)

+

(6.19)

where in the second step we have introduced a Fourier representation

of the Kronecker delta function. The average in (6.19) represents the

multidimensional integral

h�i �

M

Y

�=1

Z

L=2

�L=2

dx

�

L

Z

1

�1

dv

�

P (v

�

) (6.20)
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We have assumed the particles are on a line of length L, and are being

quite sloppy about the boundary conditions. We ultimately want to take

the limit M ! 1, and L ! 1 with the density � = M=L �xed, and

the result can be shown to be quite insensitive to the boundaries in this

limit. Now the advantage of the Fourier representation in (6.19) should

be quite evident: the 2M dimensional integral factorizes into products

ofM integrals. These integrals can be evaluated in closed form, and the

subsequent limit M ! 1, L ! 1, � = M=L �xed, easily taken. We

will skip these intermediate steps, and present the �nal results.

The �nal results satisfy the scaling forms discussed below (6.3), but

are, as expected, more usefully expressed in terms of reduced scaling

forms which describe the semi-classical physics of the dilute gas of triplet

magnons. The characteristic length and time scales of these reduced

scaling functions are closely analogous to those found for the Ising chain

in (4.80) and (4.88). In particular, we choose

�

c

=

1

�

=

1

3

�

2�c

2

T�

+

�

1=2

e

�

+

=T

�

'

=

�

c

p

2v

T

=

p

�

3T

e

�

+

=T

(6.21)

Notice �

c

is the mean spacing between the particles , and �

'

is a typical

time between particle collisions, which is naturally identi�ed also as

phase coherence time. The �nal result for C

u

is then

C

u;��

(x; t) =

2�

2

3

F

�

jxj

�

c

;

jtj

�

'

�

�

��

(6.22)

where F is a universal scaling function given by

F (�x;

�

t) =

"

�

2G

1

(u)G

1

(�u) + e

�u

2

=(

�

t

p

�)

�

I

0

�

2

�

t

p

G

2

(u)G

2

(�u)

�

+

G

2

1

(u)G

2

(�u) +G

2

1

(�u)G

2

(u)

p

G

2

(u)G

2

(�u)

I

1

�

2

�

t

p

G

2

(u)G

2

(�u)

�

#

� exp

�

�(G

2

(u) +G

2

(�u))

�

t

�

(6.23)

with u � �x=

�

t, G

1

(u) = erfc(u)=2, and G

2

(u) = e

�u

2

=(2

p

�) � uG

1

(u).

These expressions satisfy

R

1

0

d�xF (�x;

�

t) = 1=2, which ensures the conser-

vation of the total magnetization density with time, and yields

Z

dxC

u;33

(x; t) =

2�

3

= T�

u

(6.24)
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with the uniform susceptibility �

u

given by (6.12); this relationship be-

tween the spatial integral of C

u

and �

u

from the conservation of total

magnetization (which implies that the spatial integral of C

u

is t inde-

pendent), and the analog of the relation (4.93) (to be derived shortly)

applied to correlators of the angular momentum density. For short times

F has the ballistic form

F (�x;

�

t) � e

��x

2

=

�

t

2

=

�

t

p

�; (6.25)

which is the auto-correlator of a classical ideal gas in d = 1, and holds

for j

�

tj � j�xj � 1. In contrast, for j

�

tj � 1; j�xj it crosses over to the

di�usive form

F (�x;

�

t) �

e

�

p

��x

2

=2

�

t

(4�

�

t

2

)

1=4

(6.26)

In the original dimensionful units, (6.21) and (6.26) imply a spin di�u-

sion constant, D

s

, given exactly by

D

s

=

c

2

e

�

+

=T

3�

+

: (6.27)

While this is exact spin di�usion co-e�cient of the semiclassical model

we have introduced above, it is not immediately clear that this result

is also exact for the underlying quantum rotor model: there is a subtle

question of orders of limits which makes the above less than rigorous,

and reader is referred to Ref [117] for further discussion. Also, let us

note that the Fourier transform of (6.26) yields the di�usive form (6.2)

with the susceptibility �

u

given by (6.12).

We turn to the correlations of the order parameter �eld n(x; t). These

are very closely related to the computations of the N = 1 case in Sec-

tion 4.5.2. The basic observation is that, like �̂

z

, the �eld n(x; t) is

the creation and annihilation operator for magnon excitations above the

ground state: in other words a relationship analogous to (4.102) holds.

This can be seen explicitly from the strong-coupling expansion in Sec-

tion 5.1.1. Then by arguments analogous to those in Section 4.5.2 we

expect for the two-point correlator C

��

= C�

��

in (5.2)

K(x; t) � C(x; t)j

T=0

=

Z

dk

2�

cA

2"

k

e

ikx�i"

k

t

=

A

2�

K

0

(�

+

(x

2

� c

2

t

2

)

1=2

=c); (6.28)

whereA is the quasiparticle residue. The Bessel function is the Feynman
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propagator of a relativistic particle, and its properties were discussed be-

low (4.103). The T > 0 computation proceeds as in Section 4.5.2. We

have to augment the trajectories in Fig 6.3 by an additional trajectory

created and annihilated by the n �elds. This is the only trajectory

which moves only forward in time, and hence picks up additional �1

signs at each of its collisions. The T > 0 modi�cation is then a matter

of averaging over these �1 signs. Unlike the Ising case, this cannot be

done analytically, as the `colors' on the lines introduce additional com-

plications. This problem and its numerical solution have been discussed

elsewhere [117]; the answer has a structure closely analogous to that in

Section 4.5.2. We �nd, as in (4.105), that

C(x; t) = K(x; t)R (x; t) (6.29)

where R(x; t) is a relaxation function very similar, although not exactly

equal, to that found in (4.105): it obeys a scaling form identical to

(4.90), and so R decays exponentially on the spatial scale � �

c

, and on

the temporal scale � �

'

. As in Section (4.5.2) we can also Fourier trans-

form (6.29) to obtain the structure factor S(k; !). This has to be done

numerically, and it is found that for jkj <

p

�T=c, the frequency depen-

dence of the answer is reasonably well approximated by the following

Lorentzian form

S(k; !) �

A

"

k

0:72=�

'

(! � "

k

)

2

+ (0:72=�

'

)

2

: (6.30)

This result is the analog of (4.106).

6.3 High temperature limit of continuum theory, �

+

� T � J

If we continue to push the analogy with the Ising chain further, we would

expect that the present region (Figs 5.1 and 6.1) should be similar to

the universal high T region of the Ising chain discussed in Section 4.5.3.

There, we found a novel regime of `quantum relaxational' dynamics for

which no classical description was possible: the thermally excited parti-

cles had a spacing which was of the order of their de Broglie wavelength.

The physics in the present region of the O(3) model is similar, but the

presence of logarithms associated with the 
ow (6.8) does lead to a new

twist. In particular, we will �nd that logarithms of ln(T=�

+

) make

the classical thermal 
uctuations marginally more important than the

quantum 
uctuations. If one is satis�ed with results to leading logarithm

accuracy, i.e., where one neglects all corrections of order 1= ln(T=�

+

),
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then it is possible to develop an e�ective classical model of the dynam-

ical properties. This classical model will be quite di�erent from that

of the low T region T � �

+

, where we had a description in terms of

classical particles. In contrast, the present description will be in terms

of classical waves. Our discussion here borrows heavily from the original

analysis in Ref [117].

There are a number of ways to make the basic argument. One is to

notice that the large N result (5.79) predicts a correlation length for n

correlations

� � (c=T ) ln(T=�

+

): (6.31)

(We will shortly obtain the exact correlation length to leading logarith-

mic accuracy, and this has the same form as (6.31)). At distances of

order or shorter than this correlation length we may crudely expect that

the weak-coupling, spin-wave picture of Section 5.1.2 will hold, and the

typical spin-wave excitations will have energy of order or smaller than

c�

�1

, which is logarithmically smaller than the thermal energy T ; in

other words

c�

�1

T

�

1

ln(T=�

+

)

< 1 (6.32)

So the occupation number of these spin-wave modes will then be

1

e

c�

�1

=T

� 1

�

T

c�

�1

> 1 (6.33)

The last occupation number is precisely that appearing in a classical

description of thermally excited spin waves, which is the approach we

shall follow here.

Another way to state the dominance of classical e�ects is to run the


ow equation (6.8) backwards: going to higher T means that we are

exploring shorter scales and higher energies, at which (6.10) implies an

e�ective coupling g � 1= ln(T=�

+

), which is small. The coupling g

controls the strength of the quantum 
uctuations, and these are therefore

expected to be subdominant. This latter argument will be made more

precise in the following discussion.

We begin our analysis by �rst focusing on the static and thermody-

namic correlations in this region. We shall use a method introduced by

Luscher [312], and the same method will be of considerable use to us

in subsequent chapters. The main idea is to develop an e�ective action

for only the zero Matsubara frequency (!

n

= 0) components of n after
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integrating out all the !

n

6= 0 modes. We will do this �rst for the cor-

relation length in this and the following subsection. We will turn to

the thermodynamic uniform susceptibility in Section 6.3.2, and to the

dynamical properties in Section 6.3.3.

The e�ective action for the zero frequency modes can be obtained

in the same background �eld method discussed in Section 6.1: we just

identify the n

<

modes with the zero frequency components, and the ~�

�elds with all �nite frequency components. Then it is easily seen that

the e�ective action for n

<

has precisely the same form as the d = 1

classical ferromagnet discussed in Section 2.3, with partition function

(2.68) at

e

h = 0; for our purposes we write this as

Z =

Z

Dn(x)�(n

2

� 1) exp

 

�

(N � 1)�

4

Z

dx

�

dn(x)

dx

�

2

!

(6.34)

where � is already known from Section 2.3 to be the spatial correlation

length. (Actually we have usually reserved � to be the symbol for the

equal time correlations, while the present approach gives the correlation

length for the zero frequency correlations; as we will see in Section 6.3.3,

these two lengths are asymptotically equal because of the dominance of

classical thermal 
uctuations). Generalizing (6.7) to the present situa-

tion we have

(N � 1)�T

2

=

cN

g

� c

2

(N � 2)

Z

�

dk

2�

T

X

!

n

6=0

1

c

2

k

2

+ !

2

n

+ : : :

�

cN

g

�

c(N � 2)

2�

ln

�

�

T

�

(6.35)

where in the second equation we have ignored constants on order unity.

Now we can use (6.10) to eliminate �, and we �nd

� =

c(N � 2) ln(T=�

+

)

T�(N � 1)

; (6.36)

in agreement with (5.79). Notably, dependence on g has also disap-

peared. This is not an accident{the renormalization group was designed

to make this happen order-by-order in g, and all physical properties

depend only upon the measurable ratio �

+

=T .

Actually, it is possible to be quite precise about the omitted constants

of order unity in the argument of the logarithm in (6.36). To do this

requires use of the �eld-theoretic renormalization group, and this will be

done in the following Section 6.3.1. The same method will be applied to

the uniform susceptibility, �

u

in Section 6.3.2.



150 The d = 1, O(N � 3) rotor models

6.3.1 Field-theoretic renormalization group

A full description of this sophisticated approach is already available in a

number of reviews in the literature [63, 550, 247] (we especially recom-

mend the article by Brezin et al. [63] for a physical exposition), and the

uninitiated reader is referred to these works for an in-depth treatment.

Here we will be satis�ed by noting the essential points, and quickly re-

viewing the computations necessary for our purposes.

To understand the low energy and long-distance limit of the d = 1

O(N) rotor model, it is necessary to understand the behavior of the

couplings under changes of the cut-o� �. Computationally, it is advan-

tageous to replace the cut-o� by a new renormalization scale, �, de�ned

in the following manner. We de�ne the coupling constants and the scale

of the �elds by relating them to the values of suitably chosen Green's

functions (computed in the presence of a cut-o� �) at external momenta

proportional to �. This statement is often shortened to \de�ne the cou-

plings at the scale �". Now if we take an arbitrary observable, and

re-express it in terms of couplings de�ned at the scale �, we will �nd

that the resulting expressions are �nite in the limit � ! 1 (this is a

consequence of the `renormalizability' of the �eld theory). So we take

just this limit in all Green's function, and are left with �-independent

expressions in which we no longer have to deal with the (messy) details

of the short distance cuto�. As an added bonus, the independence of the

underlying physics on the arbitrary scale � also yields the required renor-

malization group equations. For the case of the O(N) rotor model, only

two rede�nitions of coupling constants or �eld scales (`renormalizations')

are necessary [65]: one renormalizing the coupling g to g

R

(�), and the

other rescaling the overall �eld scale (related to the quasiparticle residue

A) by a factor Z. Let us consider just the coupling constant renormal-

ization for now. There is a multiplicative factor which relates g

R

to the

bare coupling constant, g in the theory with a cut-o� �; in an expan-

sion in powers of g

R

, this factor is a function of ln(�=�). However, it is

advantageous to regulate the ultraviolet behavior by dimensional regu-

larization (which means evaluating all momentum integrals in d = 1� �

spatial dimensions), in which case the logarithms turn into poles in �.

The explicit relationship between the bare and renormalized coupling

was shown by Brezin and Zinn-Justin [65] to be

g = g

R

(�)�

��

�

1 +

N � 2

2�N

g

R

(�)

�

+O(g

2

R

)

�

: (6.37)
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Similarly the �eld rescaling factor is shown to be [65]

Z = 1�

N � 1

2�N

g

R

(�) +O(g

2

R

): (6.38)

It is now possible to state the simple, �eld-theoretic recipe for com-

puting correlators of (5.16) in d = 1. First, obtain formal expressions for

any rotationally invariant, physically observable correlator of the bare

theory in an expansion in powers of g, and leave all the Feynman inte-

grals as formal, unevaluated expressions. Next, perform the substitution

(6.37) to replace g by g

R

, and also multiply the correlator by a power of

Z

�1

for each power of the �eld n in the correlator. Now, evaluate all the

integrals in d = 1� � dimensions, in powers of �. The constants in (6.37)

and (6.38) have been cleverly chosen so that all poles in � cancel. The

resulting expressions for the correlators of the theory are now expressed

in terms of g

R

, and the momentum scale �, with no explicit dependence

on �.

It would seem that not much has been achieved with this rather sophis-

ticated transformation. We began with a theory with a dimensionless

coupling g and a cut-o� �: this cut-o� was rather hard to deal with in

computing Feynman graphs, especially multi-loop ones. We have ended

up with a closely related theory with the same universal low energy

properties: this theory is expressed in terms of a dimensionless coupling

g

R

, and a scale � which plays the physical role of an ultraviolet cut-o�.

The latter theory is much easier to compute with, and so it seems is

that all we have done is to devise a clever and convenient short-distance

regularization which allows us to compute properties to a high order in

g

R

.

However there is an additional advantage to the second approach: by

using the independence of the original bare theory on �, it is possible

to easily derive an exact renormalization group equation for the 
ow of

g

R

(�), and all observables, under rescalings of the `cut-o�' � ! �e

`

.

Indeed, simply di�erentiating (6.37) with respect to � at a �xed g, gives

us the 
ow equation

dg

R

d`

=

N � 2

2�N

g

2

R

; (6.39)

which is of course the same equation obtained earlier in (6.8). We are

dealing with the coupling g

R

rather than g, but this is physically in-

nocuous as it is simply the consequence of trading the momentum cuto�

� for a renormalization scale � (which e�ectively plays the role of the

cuto�). Similarly, the �eld-scale renormalization, Z also implies an ex-
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act statement on the behavior of correlation functions under changes of

�. (Again we are not terribly concerned with the physical consequences

of changing the scale of correlators of n as we will eventually set the

overall amplitude of the structure factor using the physically measur-

able quasiparticle amplitude A.) This is also discussed by Brezin and

Zinn-Justin [65]; for the two-point correlator of n de�ned in (5.2) their

result takes the form

Z

�1

C(x; t; g

R

(�

1

); �

1

) =

�

ln

�

�

1

�

2

��

(N�1)

(N�2)

Z

�1

C(x; t; g

R

(�

2

); �

2

):

(6.40)

We will have several occasions to use this fundamental relation later.

Let us return to the physical problem of computing the correlation

length using the present �eld-theoretic approach. The consequences of

the above recipe are simple: we take the formal expression represented by

the �rst equation in (6.35), perform the substitution in (6.37) to replace

g by g

R

(�), and then evaluate the integrals in d = 1� � dimensions. Let

us specify a few steps required in the latter evaluation:

T
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n
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=
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=

1

c

�
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�

��
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Z

d

1��

k
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1��

�

1
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coth

k

2

�

1

k

2

�

1

2

p

k

2

+ 1

�

+

�(�=2)

(4�)

1��=2

�

(6.41)

We are only interested in the poles in � and the accompanying constants,

and to this accuracy the �rst integral on the right hand side can be

evaluated directly at � = 0, while the � function yields a 1=� term. Now

inserting (6.41) and (6.37) into the �rst equation in (6.35), we �nd that

all the poles in � cancel in the resulting expression, and we get

(N � 1)�T

2c

=

N

g

R

(�)

�

(N � 2)

2�

ln(�=T

p

C) (6.42)

where the constant C was de�ned in (5.80). Rather than leave this

expression in terms of � and g

R

(�), it is conventional to express the
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result in terms of the so-called `renormalization group invariant �

MS

'.

This is a somewhat unfortunate conventional notation for this quantity,

as it suggests that �

MS

is some sort of cuto�. In fact it is not, and

is really a quantity which is closely analogous to the momentum scale

�

+

=c which is related to the energy gap, or the T = 0 correlation length.

In the language of Section 2.1.1, �

�1

MS

is a \large" length scale, rather

than a \short" scale. The basic idea behind the de�nition of �

MS

is as

follows. Choose any physically measurable length scale associated with

d = 1 rotor model at T = 0 you wish. By simple dimensional analysis,

this scale must be of the form (1=�)� some function of g

R

(�). Now as

this scale is physically measurable, it must not depend upon the choice

of �, i.e., the resulting combination should be invariant under the 
ow

equation (6.37). This turns out to be a very strong restriction: up to

an arbitrary overall numerical factor, it turns out there is only one such

function. We choose this overall factor by convention and call the result

�

MS

: by integration of the two-loop version of the 
ow equation, we

de�ne, following Ref [312]

�

MS

= �

p

C

�

(N � 2)

2�N

g

R

�

�1=(N�2)

exp

�

�

2�N

g

R

(N � 2)

�

: (6.43)

The constant C in the prefactor is purely for convenience and arbitrarily

chosen.

Now the implication of the reasoning above is that all T = 0 measur-

able length scales are universal numbers times �

�1

MS

, and cannot depend

separately upon � and g

R

(�); similarly all measurable length scales at

T > 0 are �

�1

MS

times universal functions of the dimensionless ratio

c�

MS

=T . It is easy to verify that this holds for our expression for the

correlation length in (6.42): solving (6.43) for g

R

(�) and substituting in

(6.42) we �nd

�(T ) =

c(N � 2)

T�(N � 1)

�

ln

�

CT

c�

MS

�

+

1

(N � 2)

ln ln

T

c�

MS

+O

�

ln ln(T=c�

MS

)

ln(T=c�

MS

)

��

:(6.44)

As expected, the scale � has completely dropped out.

However, the expression (6.44) is not very useful as it stands: it in-

volves the scale �

MS

which was de�ned by convention in the dimensional

regularization scheme, and is not a priori known for any physical sys-

tem. To make it useful, we need to relate �

MS

to some other physical

observable. We have consistently been using the T = 0 energy gap �

+
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to characterize the ground state, and so it would be useful to know the

universal dimensionless ratio �=c�

MS

: this was computed recently by

Hasenfratz and Niedermayer [216, 215] using the Bethe ansatz solution

of the �-model; they obtained

�

+

c�

MS

=

(8=e)

1=(N�2)

�(1 + 1=(N � 2))

: (6.45)

The results (6.44,6.45) constitute the more precise form of (6.36). Ex-

plicitly, for the case N = 3 we have the exact leading result for the

correlation length

�(T ) =

c

2�T

ln

�

32�e

�(1+
)

T

�

+

�

; (6.46)

where 
 is Euler's constant.

6.3.2 Computation of �

u

This section will determine the uniform susceptibility, �

u

, by a strat-

egy similar to that employed above in the computation of �(T ): place

the system in an external magnetic �eld H, integrate out the non-zero

frequency modes, and then perform the average over the zero frequency


uctuations. We choose an H which rotates n in the 1{2 plane, and use

(6.5) to integrate out the non-zero frequencies. Therefore the �elds n

<

,

e

a

are independent of � , while the �

a

have no zero frequency compo-

nents. It is also clear that the �elds n

<

(x) are simply the n(x) �elds

appearing in (6.34). We expand the partition function to quadratic or-

der in H, drop all terms proportional to the spatial gradients of n(x) or

e

a

(x) (these can be shown to yield logarithmically subdominant contri-

butions to �

u

), and �nd that the H dependent terms in the free energy

density are

�
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2

2cg
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c
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�
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d

(0; 0)i

�

(6.47)
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Evaluating the expectation values of the � �elds, and using orthonor-

mality of the vectors n, e

a

, the expression (6.47) simpli�es to

�
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2cg

2

4
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2
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+ n

2

2

)
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(6.48)

Finally to obtain the susceptibility �

u

, we have to evaluate the expec-

tation value of the zero frequency �eld n under the partition function

(6.34). This simply yields hn

2

1

i = hn

2

2

i = 1=N . The �rst frequency sum-

mation is precisely the same as that evaluated earlier for � in the �rst

equation in (6.35), while the second is explicitly �nite in d = 1 and can

directly evaluated; in this manner we obtain our �nal result for �

u

:

�

u

(T ) =

2

N

�

(N � 1)T�

2c

2

�

(N � 2)

2�c

�

=

(N � 2)

N�c

ln

�

CT

c�

MS

e

�

(6.49)

We have omitted the form of the subleading logarithms, which are the

same as those in (6.44). Again, let us quote the explicit expression for

�

u

for N = 3:

�

u

(T ) =

1

3�c

ln

�

32�e

�(2+
)

T

�

+

�

: (6.50)

It is useful to compare the T � �

+

expression (6.50) for �

u

with the

T � �

+

result in (6.12): the two expressions are roughly equal for

T � � suggesting that one or the other of the two asymptotic limits is

always reasonable.

6.3.3 Dynamics

We have now assembled all the ingredients necessary for a complete

description of the low frequency dynamics. The key observation, made

above (6.33), is that the energy, !, of the characteristic excitation obeys

! � T . We expect the spectral density, Im�(k; !) to be dominated

by weight at such frequencies, and the 
uctuation-dissipation theorem

(4.9) then takes it `classical' form in (4.92). We will work here with an

e�ective theory in which (4.92) is obeyed exactly, and so the equal-time

structure factor, S(k), is related to the static susceptibility, �(k), by
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S(k) = T�(k), as in (4.93). However, the static susceptibility is given

by the two-point correlator of the !

n

= 0 components of the n �eld, and

these are determined by the e�ective action (6.34). So we arrive at the

important conclusion that (6.34) yields the equal-time correlators of n

in the limit that the classical 
uctuation dissipation theorem in (4.92)

is obeyed.

How do we extend (6.34) to unequal time correlations ? Recall that

in classical statistical mechanics equal time correlations are given by

an integral over con�guration space (as in

R

dq), while an extension to

dynamics requires an integral over phase space (as in

R

dpdq). Further-

more, the integral over the conjugate momenta simply factorizes, and

for equal time correlations we can return to the con�guration space for-

malism. So here, we need to extend (6.34) by �nding the appropriate

integral over conjugate momenta. The conjugate momentum of the ro-

tor orientation n is clearly the rotor angular momenta L. So we treat L

also as a classical variable, and generalize (6.34) to a \

R

dqdp" integral

of the form (we will specialize the remainder of the discussion to the

special case N = 3):

Z =

Z

Dn(x)DL(x)�(n

2

� 1)�(L � n) exp

�

�

H

c

T

�

H

c

=

1

2

Z

dx

"

T�

�

dn

dx

�

2

+

1

�

u?

L

2

#

; (6.51)

L, n are classical commuting variables. The second term in H

c

was

absent in (6.34), and represents the kinetic energy of the classical ro-

tors: integrating out L we obtain (6.34) as we should. The value of

the coupling �

u?

in the kinetic energy can be determined by a simple

argument. It is clear that an external �eld H will couple to the total

angular momentum, and will therefore modify the classical Hamiltonian

by

H

c

! H

c

�

Z

dxH � L: (6.52)

Evaluating then linear response of (6.51) shows that

�

u

=

2

N

�

u?

(6.53)

withN = 3 (we have given, without proof, the expression for generalN);

the factor of 2=3 comes from the constraint L � n = 0. Using (6.49), we

then have the value of �

u?

. It should also be clear from this discussion

that �

u?

has a simple physical interpretation: it is the susceptibility to a
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�eld oriented perpendicular to the local direction of the order parameter

n.

Finally, to proceed to unequal time correlations, we need the equations

of motion obeyed by the classical n, L �elds. A direct approach is to

compute the quantum equations of motion, and then to simply treat the

quantum operators
^
n and

^

L as classical c-numbers: this is valid because

the expectation value of any term will be dominated by large values as

in (6.33), and any e�ects from non-commutativity will be suppressed.

A quicker way to obtain the answer is to realize that the same result is

obtained by replacing the quantum commutators by Poisson brackets,

and generating the Hamilton-Jacobi equations of the Hamiltonian H

c

.

The required Poisson brackets here are the continuum classical limit of

the commutation relations (1.19):

fL

�

(x); L

�

(x

0

)g

PB

= �

��


L




(x)�(x � x

0

)

fL

�

(x); n

�

(x

0

)g

PB

= �

��


n




(x)�(x � x

0

)

fn

�

(x); n

�

(x

0

)g

PB

= 0: (6.54)

From this, and (6.51), we obtain directly the equations of motion for the

quasi-classical waves

@n

@t

= fn;H

c

g

PB

=

1

�

u?

L� n

@L

@t

= fL;H

c

g

PB

= (T�)n�

@

2

n

@x

2

: (6.55)

To compute the needed unequal time correlation functions, pick a set

of initial conditions for n(x), L(x) from the ensemble (6.51). Evolve

these deterministically in time using the equations of motion (6.55).

The value of the correlator is then the product of the appropriate time-

dependent �elds, averaged over the set of all initial conditions. We also

note here that simple analysis of the di�erential equations (6.55) shows

that small disturbances about a nearly ordered n con�guration travel

with a characteristic velocity c(T ) given by

c(T ) = (T�(T )=�

u?

(T ))

1=2

; (6.56)

which is a basic relationship between thermodynamic quantities and the

velocity c(T ). Notice from (6.44) and (6.49) that to leading logarithms
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c(T ) � c, but the second term in the �rst equation of (6.49) already

shows that this result is not satis�ed by the subleading terms.

Before relating the required correlators of the quantum model for T �

�

+

to the classical model de�ned above, we need to settle one �nal issue:

that of the overall scale of the �elds n, L. The scale of L is easy to set|

it is speci�ed completely by the coupling to the �eld H in (6.52), and by

the �rst of the Poisson bracket relations in (6.54). These take the same

values in the underlying quantum model and undergo no renormalization

upon integrating out the �nite frequency degrees of freedom. We have

therefore

C

u;��

(x; t) = hL

�

(x; t)L

�

(0; 0)i

c

(6.57)

where the subscript c represents the averaging procedure discussed below

(6.55). The argument for the �eld scale of n is somewhat more subtle.

So far the only parameter which has been sensitive to the scale of the

order parameter has been the quasi-particle amplitude A, which was

de�ned from the residue of the quasi-particle pole at T = 0. In contrast,

we need the overall scale of n at a temperature T � �

+

. The matching

between these two scales can however be performed with the aid of

the renormalization group invariance equation (6.40) which was noted

earlier. Now the quasi-particle amplitude A is naturally de�ned at a

scale �

1

� �

+

, where the coupling g

R

is of order unity. On the other

hand, the integration out of �nite frequency modes and the derivation of

the e�ective action for the zero frequency modes is most easily done at

�

2

� T ,as the coupling g

R

� 1=(ln(T=�

+

) and the perturbation theory

will be free of large logarithms. The two scales can be related via (6.40),

and in this way we obtain the required result

C

��

(x; t) = A

e

C

�

ln

�

T

�

+

��

(N�1)

(N�2)

hn

�

(x; t)n

�

(0; 0)i

c

(6.58)

The constant

e

C is an unknown pure, universal number which cannot be

obtained by the present methods. It could, in principle, be obtained

from the Bethe-ansatz solution.

Let us now examine the structure of the classical dynamics problem

de�ned by (6.51) and (6.55). It obeys that the crucial property of be-

ing free of all ultraviolet divergences: this is clear from the analysis of

equal time correlations in Section 2.3, and the unequal time perturba-

tion theory discussed in Ref [69]. Consequently, we may determine its

characteristic length and time scales by simple engineering dimensional

analysis, as no short distance cuto� scale is going to transform into an
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anomalous dimension. Indeed, a straightforward analysis which shows

that this classical problem is free of dimensionless parameters, and is a

unique, parameter-free theory. This is seen by de�ning

x =

x

�

t =

t

�

'

L = L

s

�

T�

u?

; (6.59)

where we have anticipated that the characteristic time, �

'

, will be the

phase coherence time, and it is given by

�

'

=

r

��

u?

T

; (6.60)

then inserting these into (6.51) and (6.55), we �nd that all parameters

disappear and the partition function and equations of motion acquire a

unique, dimensionless form, given by setting T = � = �

u?

= 1 in them.

The above transformations allow us to obtain scaling forms for the

dynamic observables in terms of, as yet undetermined, universal func-

tions.

First, consider the correlators of n. The equal time two-point correla-

tions of (6.34) are known from Section 2.3 to decay simply as e

�jxj=�

=3;

from these and (6.58), we deduce that the equal-time structure factor

S(k) (de�ned in (4.5)) is given by

T�(k) = S(k) = A

e

C

�

ln

�

T

�

+

��

(N�1)

(N�2)

2�=3

(1 + k

2

�

2

)

: (6.61)

For the dynamic structure factor, S(k; !), (6.59) implies a scaling form

similar to (4.95)

2T

!

Im�(k; !) = S(k; !) = S(k)�

'

�

Sc

(k�; !�

'

); (6.62)

where �

Sc

is a universal scaling function, normalized as in (4.96). Also,

because the equations of motion are classical, the relation (4.92) is

obeyed exactly, and �

Sc

is an even function of !. For further infor-

mation on the structure of �

Sc

we refer to a recent paper [69], which

used a combination of analytic and numerical methods. At su�ciently

large k�, we expect a pair of broadened, reactive, `spin-wave' peaks at

! � c(T )k (with c(T ) given in (6.56)), which are similar to those found



160 The d = 1, O(N � 3) rotor models
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ω

Fig. 6.4. Numerical results of Ref [69] for the scaling function �

Sc

(0; !) ap-

pearing in (6.62).

in the high T limit of the quantum Ising chain in Fig 4.12. For the

opposite limit of small k�, we present the numerical results of Ref [69]

for �

Sc

(0; !) in Fig 6.4. There is a sharp relaxational peak at ! = 0,

which is again similar to that found in the high T limit of the quantum

Ising chain in Fig 4.12. However, there is now a well-de�ned shoulder

at ! � 0:7 which was not found in the Ising case. This shoulder is

a remnant of the large N result (5.22) which predicts a delta function

! = �m, with m given by (5.79) in the present large N limit. So N = 3

is large enough for this �nite frequency oscillation to survive in the high

T limit.

There is alternative, helpful way to view this oscillation frequency.

Even though we are considering a theory with a unit length �eld n, cor-

relations of n decay exponentially on a scale �. So if we imagine coarse-

graining out to the length �, there will be large amplitude 
uctuations

in the coarse-grained �eld, and it is then useful to visualize an e�ective

�eld �

�

with no length constraint, as we discussed in Section 3.1. As this

�eld �

�

is spatially disordered, we expect its e�ective potential to have

a minimum near �

�

= 0. The �nite frequency in Fig 6.4 is then due to

the harmonic oscillations of �

�

about this potential minimum. This is
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interpretation is also consistent with the large N limit, in which angular

and amplitude 
uctuations are not distinguished. The above argument

could also have been applied to the quantum Ising chain, but the ab-

sence of such a reactive peak at k = 0 in Fig 4.12 indicates that N = 1 is

too far from N =1 for any remnant of this large N physics to survive.

We will meet related phenomena in our study of a quasi-classical wave

model for the high T limit in d = 2 in Section 8.3.

We turn next to the correlators of L. The long-time behavior of these

was examined numerically in Ref [69], and it was found to be consistent

with the di�usive form (6.2). We already know the value of the uniform

susceptibility �. For the spin di�usion constant D

s

, we can deduce

simply from the fact that it has dimension (length)

2

=time, and from

(6.59) that it must obey

D

s

= B

T

1=2

�

3=2

�

1=2

u?

(6.63)

where B is a universal number. The numerical estimate [69] is B �

xxxxxx.

6.4 Summary

We summarize the basic properties of the two regimes in Figs 5.1 and 6.1

in Fig 6.5. We also recall that in the low T region, the dynamic structure

factor, S(k; !), has most of weight in a frequency window about ! = �

+

of width 1=�

'

. In the high T region, S(k; !) becomes an even function

of ! and most of its weight is in a window of width 1=�

'

centered around

! = 0.

6.5 Applications and extensions

We have already seen in Section 5.1.1.1 that the d = 1, O(3) quan-

tum rotor model describes the so-called two-leg ladder antiferromag-

nets [34, 114]. There are materials, like SrCu

2

O

3

[34], which consist of

two adjacent S = 1=2 spin chains, with neighboring spins on the two

chains coupled to each other like the rungs of a ladder; thus, they are

modeled by (5.7) for the case where the sum over i; j extends a simple

one dimensional chain. Actually, as we will see in Section 13.3.1, a much

broader class of d = 1 antiferromagnets is described by the O(3) rotor

model, including spin chains in which the individual spins have inte-
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Fig. 6.5. Values of the correlation length, � (de�ned from the exponential

decay of the equal-time correlations of n), the uniform spin susceptibility, �

u

,

the phase coherence time, �

'

, and the spin di�usion constant, D

s

, for the two

regimes in Figs 5.1 and 6.1. Results are for N = 3, although many results for

general N � 3 appear in the text. There is a large length scale, �

c

, in the low

T region, which was given in (6.21) and does not appear below; this is the

spacing between the thermally excited particles.
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ger spin S. The mapping to the rotor model requires that all of these

antiferromagnets have an energy gap above the ground state.

There have been a very large number of experimental studies of such

one-dimensional antiferromagnets. For example, in the neutron scatter-

ing study of the S = 1 spin chain compound Y

2

BaNiO

5

, Xu et al. [532]

present clear evidence for a triplet particle in the low T spectral den-

sity, along with the long phase coherence time associated with its pres-

ence [532, 1]. Thermodynamic and NMR measurements on S = 1 spin

chains and spin ladders have been surveyed by Itoh and Yasuoka [243]:

a striking feature of the data is that the energy gaps measured in acti-

vation plots of the NMR relaxation rate 1=T

1

are about 1:5 times the

measured gap in a thermodynamic measurement of the uniform sus-

ceptibility. It was argued in Ref [117] that this feature could be quite

generally explained by the picture of low T spin di�usion developed in

Section 6.2 and the value of the spin di�usivity in (6.27). Detailed com-

parisons [117] of the ballistic to di�usive crossover in (6.23) have been

made against NMR experiments by Takigawa et al. [485] on the S = 1

spin chain compound AgVP

2

S

6

.
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As we will see in Chapter 13, the high T analysis of Section 6.3 ap-

plies to spin chains with larger values of S, or to spin ladders with

greater than two legs, at intermediate temperatures; the precise limits

on experimental applicability are discussed in Ref [69]. Explicit compar-

isons of the thermodynamic predictions in Section 6.3 have been made

against Monte Carlo data for S = 2 chains by Kim et al. [271], with

reasonable agreement. Experimental studies of S = 2 chains have also

been undertaken [186] recently, and there are interesting prospects for

confrontation between theory and experiments on dynamical properties

in future work. Dynamical measurements have been made on two-leg

ladder compounds at higher temperatures [268] and the results have an

interesting qualitative similarity to (6.63).



7

The d = 2, O(N � 3) rotor models

The large N limit of quantum rotor models in d = 2 was examined

in Chapter 5, and led to the phase diagram shown in Fig 5.2. There

we claimed that the large N results provided a satisfactory descrip-

tion of the crossovers in the static and thermodynamic observables for

N � 3. We shall establish this claim in this chapter, and also treat

the dynamic correlations of n at nonzero temperatures. The discussion

of the dynamics shall take place in a physical framework suggested by

the modi�ed version of Fig 5.2 shown in Fig 7.1. The low T region on

the quantum paramagnetic side can be described in an e�ective model

of quasi-classical particles which is closely related to those developed in

Sections 4.5.2 and 6.2. On the other low T region on the magnetically or-

dered side, we shall obtain a `dual' model of quasi-classical waves, which

is connected to that developed in Section 6.3. Finally, in the interme-

diate `quantum critical' or continuum high T region, neither of these

descriptions is adequate: quantum and thermal, particle- and wave-like

behavior, all play important roles, and we shall use a menage of these

concepts to obtain a complete picture in this, and the following two

chapters.

The results for the quasi-classical wave regime described in this chap-

ter will be obtained by a combination of analytical and numerical tech-

niques, which become exact in the low T limit. For the other two regions,

we shall use the large N expansion. This approximate approach is sat-

isfactory for most purposes, but fails in the very low frequency regime,

! � T . A proper description of the low frequency dynamical correla-

tors of n must await alternative techniques which will be developed in

Chapter 8 and Section 8.3.

The cases N = 1; 2, d = 2 are special because they permit phase

transitions at non-zero temperatures, and their crossover phase diagrams

164
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g

Magnetic long-range order

QUANTUM
 CRITICAL

T

g
c

0

Quantum paramagnet

QUASI-CLASSICAL
      PARTICLES

QUASI-CLASSICAL
        WAVES

Fig. 7.1. Modi�ed version of Fig 5.2 for the crossovers for the rotor model

(5.1,5.16) for d = 2, N � 3. While quasi-classical descriptions of the dynamics

and transport can be developed in the two low T regions, the behavior in the

`quantum critical' or `continuum high T ' region is more complex, with thermal

and quantum, and particle- and wave-like phenomena playing equal roles. We

shall show in Section 8.3 that, to leading order in � = 3�d, the low frequency

correlators of n in the quantum critical region are described an e�ective quasi-

classical wave model. On the other hand, the transport of the conserved L

in the quantum critical region is dominated by higher energy excitations, and

requires a particle-like description in a quantum Boltzmann equation which

will be discussed in Chapter 9.

are of the form in Fig 5.3: we will not treat the ordered phases, or

the vicinity of the nonzero temperature transition, in this chapter, but

defer their discussion to Chapter 8. In principle, the results obtained

for the low T region on the quantum paramagnetic side, and for the

continuum high T region (see Fig 5.3), apply for all N , including N =

1; 2. However, the caveats mentioned in the previous paragraph on the

failure of the large N expansion at low frequencies apply even more

strongly toN = 1; 2, and the dynamics for these cases is best understood

using the methods of Chapters 8 and 9. Nevertheless, we will quote our

results in this chapter for these two regions for all values of N .

We shall not consider time-dependent correlations of the angular mo-

mentum L in this chapter. The conservation of the total L implies that

its low frequency dynamics obeys the di�usive form (6.2). So the prob-

lem reduces to the determination of a `transport coe�cient' (the spin

di�usion constant D

s

), and we shall defer discussion of the transport

problem to Chapter 9.

The main purpose of this chapter shall be a more complete description

of the basic scaling forms for nonzero temperature correlations of n
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introduced in Section 5.4. In d = 2, on the magnetically ordered side

(g < g

c

), the scaling ansatz (5.60) is

�(k; !) =

Z

T

(2��)

�

�

�

ck

T

;

!

T

;

�

s

NT

�

(7.1)

where we have set z = 1 and used the expression (5.54) for �

�

, which

in d = 2 is simply

�

�

= �

s

=N ; (7.2)

i.e., the T = 0 spin sti�ness �

s

is an energy which serves as a measure of

the deviation of the magnetically ordered ground state from the quantum

critical point; the factor of 1=N (7.2) is for future convenience, as �

s

is

naturally of order N in the large N limit. Clearly �

s

is de�ned only

for the case of models with a continuous symmetry, and so (7.1) applies

only for N � 2. For g > g

c

we have

�(k; !) =

Z

T

(2��)

�

+

�

ck

T

;

!

T

;

�

+

T

�

(7.3)

characterizing the nonzero temperature behavior on the quantum para-

magnetic side for all N .

We will begin in Section 7.1 by treating the low T region on the mag-

netically ordered side of the d = 2 phase diagram in Fig 5.2; notice

that in this �gure the magnetic long-range disappears at any non-zero

T : this will be shown below to happen for all N � 3, and we will only

consider these cases. The following Section 7.2 will then consider dy-

namical properties of the continuum high T and quantum-paramagnetic

low T regions of Fig 5.2 and 5.3, and describe the structure of the scaling

function in (7.3); in principle, these results apply for all N .

7.1 Low T on the magnetically ordered side, T � �

s

As noted above, we will only consider the case where magnetic order

disappears at any non-zero T , and this happens (as shown below) for all

N � 3. Recall that the quantum Ising chain, considered in Chapter 4,

also had the feature of losing magnetic order at any non-zero T (compare

the phase diagrams in Fig 4.3 and 5.2): we shall �nd here that the static

and dynamic properties of the d = 2 N � 3 rotor models in this low T

region are very similar to those discussed earlier for the corresponding

region of the quantum Ising chain in Section 4.5.1. However, our analysis

shall use techniques which are very similar to those developed earlier in

the `classical wave' description of the high T region of the d = 1 rotor
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model in Section 6.3. The reader is urged to review these sections before

proceeding.

The key property of this region is the very large value of the correlation

length, obtained earlier in (5.83) in the large N limit:

�

c

� (c=T ) exp(2��

s

=NT ): (7.4)

We can use an argument similar to that following (6.31) for the d = 1

model, to establish the e�ective classical wave behavior of the system in

this region; indeed the subscript c in (7.4) anticipates this. The typical

wave excitations of the n �eld will have an energy � c�

�1

c

, and therefore

a thermal occupation number

1

e

c�

�1

c

=T

� 1

�

T

c�

�1

c

� exp

�

2��

s

NT

�

� 1: (7.5)

Therefore, as in Section 6.3, we can treat these waves classically. Note

that the classical thermal 
uctuations are exponentially preferred, unlike

the much weaker logarithmic preference in Section 6.3. The exponen-

tial preference is similar to that found for the quantum Ising chain in

Section 4.5.1, although there the reason was the energy gap towards

creation of domain walls.

This low T region was studied in the in
uential paper of Chakravarty,

Halperin and Nelson [83], where they called it \renormalized classical",

as seems natural from the reasoning above. We have not used this

name here to prevent confusion with other types of e�ectively classical

behavior which appear in di�erent regions of the phase diagram.

As in the Ising case, we can expect that static and dynamic correla-

tions obey a reduced scaling form of two arguments. The analog of the

expression (4.89) turns out to be

C(x; t) = N

2

0

�

T

�

s

�

(N�1)

(N�2)

�

c

�

x

�

c

;

t

�

'

�

(7.6)

where N

0

is the ground state ordered moment, �

c

is a completely uni-

versal function to be determined by some e�ective classical model, and

as before, �

'

, is a characteristic phase coherence time which will be de-

termined below. Unlike the Ising case, it is not possible to determine

�

c

exactly, although most of its qualitative properties can be described.

There is an additional prefactor of a power of T=�

s

in (7.6) which is not

present in (4.89); note that this is a rather weak prefactor on the scale

of �

c

as ln �

c

� �

s

=T . As we will discuss below, its origin is in the `wave-

function renormalization' of the D = 2 nonlinear �-model, which also



168 The d = 2, O(N � 3) rotor models

led to the logarithmic prefactor in (6.58) in the classical wave region of

the d = 1 quantum rotor model. It is also easy to check from (5.62) that

(7.6) is consistent with the global scaling form (7.1). Finally, note that

(7.6) is consistent with the large N result obtained from (5.22), (5.48),

and (5.58). Also, by matching scaling forms at N = 1 we obtain the

value �

'

= �

c

=c; however, we had no damping in the dynamic suscepti-

bility (5.22) at N =1, and so �

'

cannot even be interpreted as a phase

coherence time. We shall �nd that the value of the phase coherence time

at �nite N is di�erent|�

'

� (�

s

=T )

1=2

�

c

=c; this result is actually quite

similar to that for the quantum Ising chain, where we obtained in (4.80)

and (4.88), �

'

� (�=T )

1=2

�

c

=c.

We will describe the computation of the exact values of �

c

and �

'

in

the following subsections. A description of the function �

c

will then

follow.

7.1.1 Computation of �

c

The exact value of �

c

, in the limit T � �

s

, was obtained by Hasenfratz

and Niedermayer [217] building upon foundations laid in Ref [83]. Here

we shall obtain the result by a di�erent method which has the advantage

of connecting with results already obtained for the d = 1 case, and also

allowing for a streamlined discussion of dynamic properties in subsequent

subsections.

We begin by precisely de�ning �

c

: the de�nition (7.6) leaves it unde-

�ned up to an overall constant which could be absorbed into a rede�ni-

tion of �

c

. It is then clear that demanding

lim

jxj!1

�

c

(x; 0) �

e

�x

p

x

(7.7)

�xes �

c

as the exponential decay rate of the long-distance equal-time

correlations. The x dependent prefactor in (7.7) is the familiar `Ornstein-

Zernicke' form expected in the long-distance decay of a classical, two-

dimensional disordered system (the expression (5.33) is of this form in

D = d+1 dimensions). The missing coe�cient in (7.7) is universal, but

its value is not known exactly: estimates have been made in the 1=N

expansion [97] and in numerical simulations [462, 83].

As in Section 6.3, the inequality (7.5) suggests that we develop an

e�ective action for the !

n

= 0 component of n to describe its equal

time correlations. A simple argument then suggests the form of the

e�ective action. Recall that we have true long-range order in n at T = 0,
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and we have denoted the exact spin sti�ness of this ordered state as �

s

(Section 5.3.3). The energy cost of any su�ciently slowly-varying static

deformation n(x) can be computed using this sti�ness, and so we obtain

the following partition function for the equal-time correlations:

Z =

Z

Dn(x)�(n

2

� 1) exp

�

�

�

s

2T

Z

d

2

x (rn)

2

�

: (7.8)

This has the same form as the d = 1 classical wave model (6.34). The

relationship of �

s

to the couplings in the underlying quantum action

(5.16) is not known exactly, and in general, quite di�cult to determine.

At N = 1 we obtained the relationship speci�ed by (5.58) and (5.25).

For our purposes here, it will be useful to have an expression for �

s

of the

quantum model (5.16) in powers of g. Such an expansion can be obtained

by a simple extension of the methods of Section 6.1. We take for n

<

in (6.5) an externally imposed, long-wavelength, static deformation of

n, and then account for the quantum 
uctuations by integrating out �

�elds at all wavevectors and frequencies at T = 0. The energy cost of

such a deformation de�nes �

s

, and this is obtained by the generalization

of (6.7):

�

s

=

cN

g

"

1�

(N � 2)g

N

Z

�

d

3

p

(2�)

3

1

p

2

+O(g

2

)

#

(7.9)

where, as in Section 5.2, p � (

~

k; !=c), and the nature of the ultraviolet

cuto�, �, was discussed below (5.16). We shall not need to specify the

precise form of this cuto�, for the scaling properties of the quantum-

critical point at g = g

c

imply that all observables become cut-o� in-

dependent once expressed in terms of �

s

and the ordered moment N

0

,

in place of the bare couplings in (5.16). So we shall really require the

inverse of (7.9): a series for g in powers of 1=�

s

, which can, of course, be

easily generated from (7.9). Notice also that the large N limit of (7.9)

is consistent with (5.58) and (5.25).

Having determined �

s

, let us return to the properties of the e�ec-

tive partition function (7.8) for the static 
uctuations in d = 2. A little

thought exposes a crucial di�erence from the corresponding model (6.34)

in d = 1. In the latter case, the continuum theory (6.34) was ultravio-

let �nite and needed no short-distance regularization, and so the exact

correlation length appeared as a coupling constant in (6.34), and com-

pletely speci�ed the equal-time correlations of n. In contrast, (7.8) is not

well-de�ned as it stands. Indeed, the action (7.8) has precisely the same

form as the d = 1 quantum rotor model at T = 0 studied in Section 6.1,
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and was shown there to require some short-distance regularization (see

the expression (6.10) for the energy gap). In the present situation, we

do not have the luxury of choosing the form of this regularization. The

partition function (7.8) is only an e�ective classical theory, and cannot

be applied at distances so short that quantum e�ects become important.

In particular, it cannot hold at wavevectors larger than where the energy

of a spin wave � ck becomes of order T . So quantum mechanics acts

as an underlying high-momentum regularization of (7.8), at momenta of

order �

c

� T=c. We have added a subscript c to emphasize that this a

cuto� for the classical theory; �

c

is completely unrelated to the cuto�

of the quantum theory � noted in (7.9). The latter has a non-universal

nature, while the cuto� at momenta of order �

c

has a universal form

which will be elucidated below.

An important property of the model (7.8) emerged in the renormal-

ization group analysis of Chapter 6. We showed that its long-distance

properties did not depend separately upon its coupling �

s

=T and its

cuto� � �

c

, but only upon a single renormalization group invariant

�

MS

. Therefore the central task facing us is the determination of a pre-

cise expression for �

MS

as a function of �

s

=T and the momentum scale

T=c. With this at hand, we obtain �

c

by the analog of the Bethe-ansatz

relation [215, 216] (6.45)

�

�1

c

= �

MS

(8=e)

1=(N�2)

�(1 + 1=(N � 2))

; (7.10)

as the gap of the d = 1 quantum model at T = 0 becomes the exponential

decay rate of correlations of the d = 2 classical model (7.8). We could

also proceed, in principle, to use (7.8) to determine the entire function

�

c

(x; 0).

One way to determine �

MS

is to return to the underlying quantum

model (5.16) and to directly compute the long-distance form of its equal-

time correlators. This gives an expression for �

c

in terms of c, g, and �;

re-expressing g in terms of �

s

using the inverse of (7.9), and matching

against (7.10) we could then obtain the needed expression for �

MS

. This

is clearly an intractable route, as it involves the physics of (7.8) in its

strong-coupling regime. Instead, we shall use a simple trick which does

the matching between the two theories in a weak-coupling regime.

Recall our discussion in Chapter 6 that the theory (7.8) is strongly-

coupled at length scales longer than �

�1

MS

, and weakly-coupled at shorter

scales. Clearly, we should do the matching between (7.8) and (5.16)

in the latter regime. To do this, imagine restricting the spatial co-



7.1 Low T on the magnetically ordered side, T � �

s

171

ordinate, x, of both theories to an in�nite cylinder of circumference

L (the temporal direction of (5.16) remains unchanged). If we choose

L� �

�1

MS

then we will be in the weak-coupling regime, and can compute

properties of both theories using perturbation theory. At the same time,

we have to ensure that L� c=T so that all length scales are longer than

the inverse classical cuto� �

�1

c

, we remain in the regime of e�ective

classical behavior in model (5.16). Because �

�1

MS

� �

c

is exponentially

large in 1=T , these two conditions are easily compatible. Thus we have

modi�ed (7.8) to

Z =

Z

Dn(x)�(n

2

� 1) exp

 

�

�

s

2T

Z

dx

1

Z

L

0

dx

2

(rn)

2

!

; (7.11)

with periodic boundary conditions on n along the x

2

direction. How-

ever, precisely such a model, in the regime L� �

�1

MS

, was studied in Sec-

tion 6.3: we simply have to identify x

2

with the imaginary time direction

� of a �ctitious d = 1 quantum model, and the then L is just its inverse

temperature. This model was analyzed by a further dimensional reduc-

tion: we integrate out all modes of n which have a non-zero wavevector

along the x

2

direction, and obtain an e�ective one-dimensional model:

Z =

Z

Dn(x

1

)�(n

2

� 1) exp

�

�

(N � 1)�

c

(L)

4

Z

dx

1

(@

x

1

n)

2

�

; (7.12)

We have written the co-e�cient of the gradient coupling in a form such

that �

c

(L) is precisely the correlation length of two-point n correlator

along the x

1

direction (this follows from (2.68). Indeed, we can read o�

the value of �

c

(L) as a function of �

MS

and L from the result (6.44):

�

c

(L) =

L(N � 2)

�(N � 1)

ln

�

C

L�

MS

�

+ : : : (7.13)

where C is the constant de�ned in (5.80). We expect a universal scaling

form �

c

(L) = LF (L�

MS

) for general L, and (7.13) speci�es the leading

term in the small u limit of F (u). The u ! 1 limit is the strong-

coupling regime, with �

c

� �

c

(L!1) given by the Bethe ansatz result

(7.10).

Let us compute the expression corresponding to (7.13) for the quan-

tum model (5.16). We will do this by performing the dimensional re-

duction to (7.12) in one-step, in a perturbation theory in g, i.e., we will

integrate out all modes with either a non-zero wavevector in the x

2

di-

rection, or a non-zero frequency in the � direction, but not both. By a

simple generalization of (6.7) or (6.35) to this spacetime geometry, we



172 The d = 2, O(N � 3) rotor models

get

�

c

(L) =

2

(N � 1)

"

cNL

gT

�

0

X

n;m

Z

dk

2�

(N � 2)

k

2

+ (2�m=L)

2

+ (2�nT=c)

2

#

(7.14)

plus corrections of order g, where the prime indicates the sum is over all

integers n;m excluding the single point n = m = 0. The integral and

summation in (7.14) are badly divergent in the ultraviolet. However,

after expressing g in terms of �

s

using (7.9), the resulting expression is

free of divergences, as we now show. The basic technical tool is to lift the

denominators in the integrands of (7.9) and (7.14) up into exponentials

using the simple identity

1

a

=

Z

1

0

d�e

��a

(7.15)

Then the combination of (7.14) and (7.9) yields, after a suitable rescaling

of �

�

c

(L) =

2L�

s

(N � 1)T

�

1�

(N � 2)T

4��

s

Z

1

0

d�

p

�

�

A(�)A(�v

2

)� 1�

1

�v

��

(7.16)

where v = TL=c and the function A(y) was de�ned in (2.53). By sim-

ple use of the identity (2.65) and (2.53) it is easy to show that the �

integral in (7.16) is convergent. As noted earlier, we are interested in

the classical regime L � c=T , and therefore in the v ! 1 limit of the

integral in (7.16). It is not di�cult to show that the integral � ln(v)

in this limit; we determined the additive constant associated with this

logarithm numerically and found

�

c

(L) =

2L�

s

(N � 1)T

"

1�

(N � 2)T

2��

s

ln

�

LT

Cc

�

+O

�

T

�

s

�

2

#

(7.17)

where the constant C (given in (5.80) was again found to appear.

We are now prepared to perform the matching between the two ap-

proaches to computing �

c

(L). Comparing (7.13) and (7.17) we �nd that

the L dependencies are consistent, as required, and that

�

MS

=

T

c

exp

�

�

2��

s

(N � 2)T

�

: (7.18)

This is the result to one-loop order. It is possible to improve this result

to two-loop order by using the relationship (6.43) between �

MS

and the
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coupling g

R

at an arbitrary scale �. Matching (7.18) with (6.43) by

choosing � = T=c (� �

c

) we �nd that

1

g

R

(T=c)

=

�

s

NT

+

(N � 2)

4�N

ln C +O

�

T

�

s

�

: (7.19)

Inserting this back into (6.43) we obtain the �nal result [217]

�

MS

=

T

c

�

2��

s

(N � 2)T

�

1=(N�2)

exp

�

�

2��

s

(N � 2)T

��

1 +O

�

T

�

s

��

(7.20)

Combined with (7.10), we have the promised exact result for �

c

.

7.1.2 Computation of �

'

We shall follow the same strategy employed in Section 7.1.1 for �

c

: ex-

tend to dynamical properties the static mapping of the model (5.16)

on a cylinder of circumference L, c=T � L � �

�1

MS

, onto the e�ective

one-dimensional classical rotor model. By exactly the same arguments

as those leading to (6.51), we have to supplement the partition function

(7.12) by an additional kinetic energy term for the classical rotors. We

therefore consider

Z =

Z

Dn(x

1

)DL(x

1

)�(n

2

� 1)�(L � n) exp

�

�

H

c

T

�

H

c

=

1

2T

Z

dx

1

"

(N � 1)T�

c

(L)

2

�

dn

dx

1

�

2

+

1

L�

u?

(L)

L

2

#

(7.21)

where L�

u?

(L) is the uniform susceptibility per unit length of the model

(5.16) on a cylinder of circumference L. The equations of motion of this

one-dimensional classical rotor model follow from the Poisson brackets

(6.54). The structure of these has been analyzed in Section 6.3, and by

(6.59) they imply a characteristic time

�

'

(L) �

�

�

c

(L)L�

u?

(L)

T

�

1=2

(7.22)

The value of �

'

(L) is undetermined up to an overall constant which we

will choose later at our convenience.

It remains to compute �

u?

(L), and then to use scaling arguments

to extrapolate perturbative results from the regime L�

MS

! 0 to the

required L�

MS

!1.
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The uniform susceptibility follows from a straightforward generaliza-

tion of (6.48) to the present geometry. We obtain after a rotational

average of the two terms in (6.48):

�

u?

(L) =

N

cg

�

2

4

1�

(N � 2)g

cN

T

L

X

!

n

6=0

X

m

Z

dk

2�

1

k

2

+ (2�m=L)

2

+ (!

n

=c)

2

+

(N � 2)g

cN

T

L

X

!

n

6=0

X

m

Z

dk

2�

k

2

+ (2�m=L)

2

� (!

n

=c)

2

(k

2

+ (2�m=L)

2

+ (!

n

=c)

2

)

2

3

5

: (7.23)

We can eliminate g in favor of �

s

using (7.9) and obtain an expression

for �

u?

in terms of �

s

, c, T and L. This expression can then be analyzed

in a manner very similar to (7.14) and (7.16). We will not describe the

details of this, but simply note that an important di�erence emerges

from the structure of the earlier result (7.17): we �nd that there are

no singular logarithmic terms in �

u?

(L) in the limit TL=c ! 1. The

dependence on TL=c is exponentially small in this limit, and we can

therefore explicitly take the L ! 1 limit already in the expression

(7.23), by converting the summation over m into an integral. Taking

this limit, and carrying out the summation over !

n

we get

�

u?

(L) =

�

s

c

2

� (N � 2)

Z

d

2

k

(2�)

2

�

1

ck

1

(e

ck=T

� 1)

�

T

c

2

k

2

�

+(N � 2)

Z

d

2

k

(2�)

2

�

1

4T sinh

2

(ck=2T )

�

T

c

2

k

2

�

: (7.24)

The two integrals in (7.24) are individually logarithmically divergent,

but the combination is �nite: this is a veri�cation that the L!1 limit

was smooth, and that unlike (7.17), it was not necessary to a keep L

�nite to obtain a �nite answer. We can easily carry out the integral over

the di�erence of the integrands in (7.24) and obtain a result �

u?

(L)

which is independent of L to the accuracy we need

�

u?

(L) =

�

s

c

2

"

1 +

(N � 2)T

2��

s

+O

�

T

�

s

�

2

#

: (7.25)

Note that, combined with �

u

= (2=N)�

u?

, this result agrees with our

earlier large N result (5.84)

We have assembled all the ingredients necessary to estimate �

'

. Insert-

ing the results (7.13) and (7.25) into (7.22) we get (ignoring numerical
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prefactors)

�

'

(L) �

�

�

s

T

�

1=2

L

c

�

ln

�

C

L�

MS

��

1=2

(7.26)

for small L�

MS

.

As the �nal step, we have to extrapolate the result (7.26) from L�

MS

!

0 to L�

MS

!1. This can be done by a relatively straightforward scal-

ing argument. The phase relaxation time �

'

(L) is expected to be given

by a natural time scale times a dimensionless function of the ratio of the

system width L to the only scale, �

�1

MS

, which characterized the two-

dimensional nonlinear sigma model (7.11); in other words we expect

�

'

=

AL

c

G(L�

MS

) (7.27)

where A is some prefactor and G is a universal scaling function. Clearly

(7.26) is of this form, and the comparison allows us to �x the value of

A. In the limit L�

MS

! 1 we expect �

'

(L) to become independent

of the system width L, and therefore we must have G(u ! 1) � 1=u.

Using this, we get our desired �nal result for �

'

� �

'

(L!1) [83]:

�

'

�

�

�

s

T

�

1=2

�

�1

MS

c

=

�

�

s

T

�

1=2

�

c

c

; (7.28)

in the last step we have arbitrarily chosen the prefactor and the relation-

ship holds as an equality. This is the promised result for �

'

. As we noted

earlier, this result has an interesting similarity to that obtained in corre-

sponding low T region of the quantum Ising chain in Section 4.5.1{there

we found in (4.80) and (4.88) that �

'

� (�=T )

1=2

�

c

=c.

7.1.3 Structure of correlations

We turn to a discussion of the structure of the reduced classical scaling

function �

c

in (7.6).

7.1.3.1 Equal-time correlations

For the equal-time case, t = 0, it is possible to make exact analytic

statements in certain asymptotic limits, which we will now discuss (the

full functional form of �

c

(x; 0) can be obtained in a 1=N expansion, as

discussed in Ref [97]). We have already noted the long distance form in

(7.7). We will now discuss the behavior as x! 0. As we are restricting
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ourselves to the classical regime, we do not want to examine distances

shorter than the thermal de Broglie wavelength of the spin waves|we are

therefore examining the regime c=T � x� �

c

. The overall dependence

upon x in this regime follows immediately from the homogeneity relation

(6.40); indeed by the precise analog of the argument used to obtain

(6.58), but using distances rather than energies, we have

C(x; 0) � [ln(�

c

=x)]

(N�1)=(N�2)

; c=T � x� �

c

(7.29)

We can also precisely �x the prefactor of the term in (7.29) by a sim-

ple argument. At the lower boundary x � c=T thermal 
uctuations

are no longer important, and the model crosses over into its quantum-


uctuation dominated ground state correlations. As the ground state is

ordered, the correlations are very simple: we must have C(x; 0) = N

2

0

=N

for x � c=T (the factor of N comes from the average over all orienta-

tions of the ground state magnetization). Demanding that (7.29) match

smoothly with this criterion, using the value �

c

� �

�1

MS

in (7.20), and

working to leading order in T=�

s

, we �nd that the prefactor of the log-

arithm in (7.29) is uniquely determined. The resulting dependence of

C(x; 0) obeys the scaling form (7.6) (indeed, it requires the prefactor of

(T=�

s

)

(N�1)=(N�2)

in (7.6), and this is the reason for its presence), and

gives us the small x = x=�

c

limit of the scaling function:

�

c

(x� 1; 0) =

1

N

�

(N � 2)

2�

ln(1=x)

�

(N�1)

(N�2)

: (7.30)

It is also useful to present these results in momentum space, in terms of

the equal-time structure factor S(k) de�ned in (4.5):

S(k) =

Z

d

2

xe

�i

~

k�~x

C(x; 0): (7.31)

For small k, the scaling form (7.6) implies that

S(0) � N

2

0

�

2

c

�

T

�

s

�

(N�1)

(N�2)

; (7.32)

where the missing coe�cient is a universal number given by the spatial

integral of �

c

at t = 0 (its numerical estimate [507] for N = 3 is � 1:06).

For larger k, we Fourier transform (7.30), and �nd that for k�

c

� 1, but

ck � T [83, 97],

S(k) =

�

N � 1

N

�

TN

2

0

�

s

k

2

�

(N � 2)T

2��

s

ln(k�

c

)

�

1=(N�2)

: (7.33)
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Notice that for k � c=T , the term in the square brackets evaluates to

1 +O(T=�

s

), and so

S(k) =

�

N � 1

N

�

TN

2

0

�

s

k

2

: ; k � c=T (7.34)

This can be understood in terms of the response (5.57), with an ad-

ditional factor of (N � 1)=N representing the fact that this response

appears only in N � 1 directions transverse to the local ordered state.

It is instructive at this point to assemble all the known results for the

equal-time correlator C(x; 0) in the present low T region, T � �

s

. We

have

C(x; 0) =

8
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x=�

c
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(7.35)

where a

1

, a

2

are universal constants known only via 1=N expansion or

numerical simulations. It is reassuring to note that all four asymptotic

forms in (7.35) are perfectly compatible at the boundaries of their regions

of applicability. The �rst result in (7.35) follows from a Fourier transform

of (5.41), combined with prefactor constraints implied by (5.60), (5.62)

and (5.54): in this region the correlations are those of the T = 0 quantum

critical point at g = g

c

, and the � is the anomalous dimension of the

2 + 1 dimensional theory. The region c=�

s

� x � c=T is where the

system appears to have the long-range order of the g < g

c

ground state:

thermal 
uctuations have not yet become apparent. A T = 0 quantum

analysis of (5.16) is required to describe the crossover between these �rst

two regimes. Finally, the last two regimes in (7.35) are those discussed

in the present section, and are contained in the reduced classical scaling

function �

c

.
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7.1.3.2 Dynamic correlations

Let us turn to unequal time correlations. A reasonable picture has been

obtained through numerical simulations, combined with scaling argu-

ments, and matching to limiting weak-coupling regimes [507, 508]; these

results are also supported by other analytic approaches [187, 83, 97].

By arguments similar to those in Section 6.3.3, the dynamics can be

mapped onto the obvious two-dimensional generalization of the classical

non-linear wave problem de�ned by (6.51) and (6.55). This is a prob-

lem of classical rotors with orientation n(x; t) and angular momentum

L(x; t). The equal time correlations of n, as already discussed, are given

by the classical partition function (7.8). Those of L are de�ned, as in

(6.51), by the kinetic energy term L

2

=(2�

u?

) with �

u?

given by (7.25).

An initial condition is chosen from this ensemble, and then evolved deter-

ministically under the equations of motion following from the Poisson

brackets (6.54). This classical problem was numerically simulated by

Tyc et al. [507] and we will now describe their results.

It is convenient to express the results in term of the dynamic structure

factor S(k; !) de�ned by (4.4). As in (4.95) and (6.62), we can incorpo-

rate the already determined information on the equal time correlations,

and the scaling form (7.6), by writing

2T

!

Im�(k; !) = S(k; !) = S(k)�

'

�

Sc

(k�

c

; !�

'

); (7.36)

where the �rst relation is the classical 
uctuation dissipation theorem

(4.92), and the universal scaling function �

Sc

is an even function of fre-

quency, and has a unit integral of frequency, as in (4.96). The function

�

Sc

was determined numerically by Tyc et al. [507]. They found that

over a wide range of frequency and wavevectors, the frequency depen-

dence of the results could be described by the simple functional form

�

Sc

(k; !) =


(k)

(! � �(k))

2

+ 


2

(k)

+


(k)

(! + �(k))

2

+ 


2

(k)

(7.37)

where �(k) and 
(k) are functions of wavevector that were determined

numerically. This dynamic response consists of a peak at a spin-wave

(rescaled) frequency �(k) with a damping rate 
(k).

For small k, a best �t was obtained with a �(k) ! 0 as k ! 0, while


(k) approached a non-zero constant. So the spin-waves are overdamped

for k�

c

� 1, and the dynamics is purely relaxational. There is no analog

of the non-zero frequency `shoulder' found in Fig 6.4 for the classical

wave dynamics in d = 1. Thus amplitude 
uctuations are weaker in
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d = 2, and the relaxation is better considered as arising from angular


uctuations about an ordered state. This is physically sensible as it

indicates that the n �eld is `more ordered' in the present d = 2, low T

region than it was in the d = 1 high T region of Section 6.3.

For large k (more precisely, for k�

c

� 1 and ck=T � 1) we expect

that the system should crossover into the T = 0 spin-wave spectrum at

! = ck. Using the values of �

c

in (7.20), and that of �

'

in (7.28), it

is easy to see that this is consistent with the dimensionless frequency

! = �(k) for T � �

s

only if

�(k !1) = k

�

(N � 2)

2�

ln k

�

1=2

(7.38)

The large k limit of the damping 
(k) was examined in a self-consistent

perturbation theory in Ref [508] and it was found to be only logarith-

mically smaller than �(k).

7.2 Dynamics of the quantum paramagnetic and high T

regions

We will turn to the dynamical properties of the remaining two universal

regions in Fig 5.2 and 5.3. There is no signature of the ordered state in

these regions at any length or time scale. Instead, the basic physics is

of the critical ground state or the quantum paramagnet eventually los-

ing phase coherence at times longer than �

'

due to the thermal e�ects.

The qualitative nature of all the physics turns out not to be particu-

larly sensitive to the precise value of N : all of our results below will

apply to all N , including the cases N = 1; 2 which were excluded in the

low T discussion of Section 7.1. Indeed, the physical phenomena also

turns out to be essentially identical those in the corresponding regions

of the d = 1, N = 1 quantum Ising chain, which were discussed in Sec-

tions 4.5.2 and 4.5.3. The dynamical properties of this latter model were

summarized in Fig 4.13, and the `High T ' and `low T (quantum param-

agnetic)' portions of this �gure apply unchanged to the d = 2 models of

interest here for all N . Exact dynamic response functions were obtained

in Sections 4.5.2 and 4.5.3 for all the distinct dynamical regimes of the

quantum Ising chain. The same response functions of the d = 2 models

have a very similar form, but it is no longer possible to obtain exact

results. In this section, we will demonstrate how this structure emerges

at �rst order in 1=N . However, as we noted at the beginning of this

chapter, the 1=N expansion breaks down at very low frequencies, and
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for this regime we will provide an alternative approach in Section 8.3.

In a sense, the purpose of this section is somewhat technical: the ba-

sic physical concepts are perhaps better appreciated in the simpler, and

exact, discussion of Sections 4.1.1, 4.5.2 and 4.5.3, which the reader is

urged to review.

We also note that the computations for d = 1 in Chapters 4, 6 and

for d = 2 here, treat interactions in opposing limits. In the N =

1, d = 2 results of Chapter 5 we found a description in terms of

N non-interacting massive particles with a self-consistently determined

temperature-dependent energy gap; at �rst order in 1=N we will �nd

that these particles weakly scatter o� each other with a T -matrix that

is of order 1=N . In contrast, the collisions of the excitations in d = 1

are described by the S matrices (4.17,6.13), describing full re
ection of

particles with a phase shift of �, and these are as far as one can get

from the free-particle result S = 1, while being consistent with unitar-

ity; the d = 1 case is therefore properly considered as a strong scattering

limit. The qualitative similarity in �(k; !) of the weak-coupling results

below, and the earlier strong-coupling results in d = 1, is reassuring and

indicates that we have correctly understood the physics.

We begin by setting up the mechanics of the 1=N expansion for the

dynamic susceptibility. The N =1 result was given in (5.22). At order

1=N , it is necessary to including 
uctuations in the � �eld about the

saddle-point of (5.20), which is determined by the solution of (5.21).

We insert a source term in the original action (5.18) for n, and then

expand the modi�ed (5.20) up to cubic order in the deviation of � about

its saddle-point (all higher order terms can be dropped at this order in

1=N). The term purely quadratic in � de�nes a propagator for the �


uctuations: the structure of this propagator will be discussed in some

detail below. We integrate out the � 
uctuations to order 1=N , and

this leads to the corrections to the n �eld correlator, �(k; !) shown

schematically in Fig 7.2. This leads �nally to the following expression

for �(k; !), which replaces (5.22) at order 1=N [97] (the reader can

also consult Refs [30, 491] for more explicit details on the mechanics of

computing 1=N corrections for related models):

�(k; !) =

cg=N

c

2

k

2

� (! + i�)

2

+m

2

+ �(k; !)

(7.39)



7.2 Dynamics of the quantum paramagnetic and high T regions 181

Fig. 7.2. Feynman diagrams which contributing to the self energy of n at order

1=N . The n propagator is a straight line, while the � propagator, 1=�, is a

dashed line.

where the self energy � is given by

�(k; !

n

) =

e

�(k; !

n

)�

1

�(0; 0)

T

X

�

n

Z

d

2

q

4�

2

G

2

0

(q; �

n

)

e

�(q; �

n

); (7.40)

the two terms representing the contributions of the two graphs in Fig 7.2.

The frequency and momentum dependent contribution to the self energy

is

e

� which is given by

e

�(k; !

n

) =

2

N

T

X

�

n

Z

d

2

q

4�

2

G

0

(

~

k + ~q; !

n

+ �

n

)�G

0

(q; i�

n

)

�(q; �)

; (7.41)

with 1=� the propagator of the � �eld,

�(q; �

n

) = T

X




n

Z

d

2

q

1

4�

2

G

0

(~q + ~q

1

; �

n

+


n

)G

0

(q

1

;


n

); (7.42)

and G

0

is proportional to the susceptibility of n at N =1

G

0

(k; !

n

) �

1

c

2

k

2

+ !

2

n

+m

2

: (7.43)

The `mass' m in the propagators is the saddle-point value of the � �eld,

and was determined earlier in (5.72) to be

m = 2T ln

�

e

�

+

=2T

+ (4 + e

�

+

=T

)

1=2

2

�

+O(1=N) (7.44)

where, as usual, �

+

represents the gap of the quantum-paramagnetic

ground state. We also recall the important limiting forms, m = �

+

for
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T � �

+

(Eqn (5.76)), and m = 2 ln((

p

5 + 1)=2)T for T � �

+

(Eqn

(5.78)). The value of m we are using in (7.44) is actually precisely the

same as in the N =1 expression (5.72), when expressed in terms of the

bare coupling constant g. The 1=N correction in (7.44) represents the

change necessary because of the new value of the ground state energy

gap �

+

at this order. At N = 1, the gap �

+

was related to the

bare coupling constant g in (5.27) and (5.29). The 1=N corrections to

the value of �

+

is obtained by solving the following equation for the

location of the pole in the zero momentum n propagator in (7.39) at

T = 0

m

2

��

2

+

+ �(0; ! = �

+

): (7.45)

The equation relating �

+

and the coupling g must then be inverted to

express g in terms of �

+

, and the result inserted into the expression for

m. This will lead to the corrections at order 1=N in the expression (7.44),

and these are crucial in obtaining universal answers for the physical

response function �(k; !).

We will study the properties of (7.39) at T = 0 in Section 7.2.1, and

at non-zero temperatures in Section 7.2.2.

7.2.1 Zero temperature

The propagator of the � �eld in (7.42) can be evaluated in closed form

at T = 0. We �nd

�(q; !) =

1

4�c

2

p

c

2

q

2

� (! + i�)

2

tan

�1

 

p

c

2

q

2

� (! + i�)

2

2�

+

!

(7.46)

Notice that � is purely real for j!j <

q

c

2

q

2

+ 4�

2

+

, but acquires an

imaginary part for larger j!j. The threshold corresponds to the mini-

mum energy required to create two particles with total momentum q, in

agreement with the expression (7.42) for � as a two particle propagator.

We can insert (7.46) into (7.41) and determine the self energy �. It is

simpler to �rst consider only its imaginary part: this is obtained by us-

ing a spectral representation for Im(1=�) and evaluating the summation

over �

n

in the limit of zero T ; taking the imaginary part of the result we

obtain

Im�(k; !) =

1

2�

2

N

Z

d

2

q

"

~

k+~q

Z

1

0

d
 Im

�

1

�(q;
)

�

�(! � "

~

k+~q

� 
)

(7.47)
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for ! > 0 (for ! < 0 we use the fact that Im�(k; !) is an odd function

of !), with

"

~q

�

q

c

2

q

2

+�

2

+

(7.48)

the energy spectrum of the quasiparticle. Actually, there is a little

subtlety in obtaining (7.47) that we have glossed over: for large 
,

Im(1=�(q;
)) � 
, and so its Kramers-Kronig transform is not well

de�ned. This issue is discussed more carefully in Ref [97], and it is

shown there that for the imaginary part of �, the naive result obtained

by simply ignoring this potential divergence is in fact correct. Now,

the relativistic invariance of the T = 0 theory implies that (7.47) is a

function only of c

2

k

2

� !

2

, and so its general form can be deduced by

evaluating it at k = 0. For this case, the q integral can be performed,

and then changing variables from 
 to y with y

2

= 2!
� !

2

+�

2

+

, we

get our �nal expression for Im�

Im�(k; !) = �

4�

N

p

!

2

� c

2

k

2

Z

p

!

2

�c

2

k

2

��

+

2�

+

dyy

2

�

�

�

2

+ ln

2

((y + 2�

+

)=(y ��

+

))

�

�1

(7.49)

for !

2

> c

2

k

2

+9�

2

+

, and Im� is zero otherwise. So we have a threshold

at the creation of three particles above which Im� is non-zero: the O(N)

symmetry of the model only allows the N -fold degenerate particle with

momentum k and energy ! to decay into a three-particle continuum if

its energy is su�ciently large. We also note here the behavior of (7.49)

for !

2

� c

2

k

2

� �

2

+

:

Im�(k; !) = �

��

2

�

!

2

� c

2

k

2

�

(7.50)

where � is

� =

8

3�

2

N

(7.51)

In fact, it will turn out that � is precisely the same critical exponent

that appeared in (5.41), as will become clear from the discussion below.

Inserting (7.49) into (7.39) we see that the resulting structure in

Im�(k; !) is identical to that sketched in Fig 4.1 for the quantum Ising

chain. Near the quasi-particle energy ! = "

k

, � is purely real, and

to there is no broadening of the quasi-particle spectral weight, and it

remains a pure delta function as in Fig 4.1. The real part of � does con-

tribute a shift in the position of the pole, but this was already accounted

for by our de�ning �

+

as the exact T = 0 energy gap in (7.45). The next
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non-zero spectral weight in � arises at the three-particle threshold from

the imaginary part of � discussed above, and is also shown in Fig 4.1.

At next order in 1=N we will also �nd a threshold at 5�

+

and so on.

Let us return to the quasiparticle pole, and consider the value of

its residue at order 1=N . For this we have to evaluate � at the pole

position. This is most conveniently done by initially going to imaginary

frequencies, and explicitly using the relativistic invariance of the theory.

In fact, de�ning K =

p

k

2

+ !

2

n

=c

2

, the relativistic invariance implies

that � is a function only of K: by an angular average of (7.41) in

three-dimensional Euclidean spacetime, this function can be reduced to

a one-dimensional integral

�(K) =

1

2�

2

cN

Z

�

0

Q

2

dQ

�(Q)

�

1

2KQ

ln

�

(K +Q)

2

+�

2

+

(P �Q)

2

+�

2

+

�

�

2

Q

2

+�

2

+

�

(7.52)

where �(Q) is the relativistically invariant, imaginary frequency form

of (7.46). A simple analysis shows that the integral is logarithmically

divergent at large Q, and so we have introduced a relativistically invari-

ant hard-cuto� at momentum �; the same cut-o� will appear in other

intermediate expressions below, but our �nal, universal, results will be

cut-o� independent. Now, from (7.39), the quasiparticle residue A is

given by

A =

cg

N

�

1�

d�(K

2

= ��

2

+

)

dK

2

�

; (7.53)

i.e., we have to evaluate (7.52) and its derivatives at an imaginary K =

i�

+

; this is quite easily done inside the integral in (7.52), and after a

numerical evaluation of the resulting integrand we �nd

A =

cg

N

�

1� � ln

�

�

�

+

�

+

X

N

�

(7.54)

with the constant X = 0:481740823 : : :, the same � de�ned in (7.51)

makes an appearance, and we have omitted terms of order �

+

=� which

can be neglected in the limit � ! 1, which will eventually be taken.

To order 1=N , we can rewrite (7.54) as

A =

cg

N

�

�

+

�

�

�

�

1 +

X

N

�

; (7.55)

which indicates that the quasi-particle residue vanishes as �

�

+

as the

coupling g approaches g

c

from above. That this is the correct form,

follows from the general scaling arguments made earlier in Section 5.3.2
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which led to the result (5.40), and cannot be completely justi�ed at

any �nite order in the 1=N expansion. The earlier arguments showed

how such power laws appear as a general consequence of the vicinity

of the system to a scale-invariant critical point. The exponents in the

power laws can be expanded in powers of 1=N , and so are appearing

here as logarithms in the computation of observables. We introduce the

constant Z, which is precisely that appearing in the basic scaling form

(7.3), by writing

A = Z�

�

+

�

1 +

X

N

�

; (7.56)

so that by (7.55),

Z =

�

cg

N

�

�

��

; (7.57)

and (7.56) corresponds to a particular choice of the numerical constant

in (5.61). Notice that Z is a non-universal constant, dependent upon the

nature of the cuto�, and it is non-singular as the coupling g goes through

g

c

. However, as neither g nor � are measurable, we should regard (7.56)

as the de�nition of Z, where it is related to the T = 0 observables A and

�

+

. Indeed (7.56) is the analog of the relation (4.101) for the quantum

Ising chain. In a similar manner, Z can also be related to observables

of the ordered ground state (as in (4.78) for the Ising chain); we simply

quote the result obtained in Ref [97]

N

2

0

�

s

= Z

�

�

s

N

�

�

(1 + � ln 16) (7.58)

We reiterate that while the relations (7.56) and (7.58) relate Z to ground

state observables that vanish in a singular manner at the critical point

g = g

c

, Z itself is non-singular and �nite.

Now, one of the central implications of universal scaling forms like

(7.3) is that when the overall scale of the susceptibility � is expressed in

terms of the quasiparticle residue A, or the closely related non-singular

constant Z, the remaining expression becomes universal. In particular,

the cuto� dependence in the self energy � in (7.52) must disappear.

Using the value of Z above, we can rewrite (7.39) as

�(k; !) = ZT

�

"

c

2

k

2

� !

2

+ lim

�!1

�

m

2

+�(k; !)� �(c

2

k

2

� !

2

) ln

�

�

T

��

#

�1

(7.59)
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Provided the limit above exists, it is then evident that (7.59) is precisely

of the scaling form (7.3), and de�nes the scaling function �

+

. Conversely

we can use the scaling arguments by which (7.3) was derived to argue

that the limit must exist; indeed, it is not di�cult to show explicitly

that the limit exists at this order in 1=N at all T . Notice also that

the subtraction in � a�ects only its real part, and this is why we saw

no divergent terms in the computation earlier of its imaginary part.

The constant m

2

has been included within the large � limit because

the O(1=N) corrections in (7.44) are � dependent, and these terms are

required to obtain a �nite limit.

A complete expression for � at T = 0 is now available by combining

(7.52) and (7.59). The integral over P cannot be simpli�ed further, but

explicit evaluation is however possible in the limit �

+

! 0, which we

now consider. We can view this limit as approaching the critical point

at �xed momenta and frequency, or examining the large energy regime

!

2

� c

2

k

2

� �

+

. From the former point of view, we have a picture of

1; 3; 5; : : : particle continua in the spectral weight coming down in energy,

and we can ask, what does their superposed spectral weight look like?

From (7.52) and (7.46), we have in the limit �

+

! 0

lim

�!1

�

�(K)� � ln

�

�

T

��

=

4

�

2

N

Z

1

0

dQ

�

Q

2

K

ln

�

�

�

�

K +Q
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�

�

�
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� 2Q�
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3(Q
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�

= K

2

�

� ln

�

T

K

�

+

8

9�

2

N

�

(7.60)

Taking the imaginary part of (7.60) for real frequencies, we immediately

get (7.50) for ! > ck: this explains why we parameterized the spectral

weight in terms of the exponent �. Also inserting (7.60) into (7.59) we

get

�(k; !) = Z

�

1�

8

9�

2

N

�

1

(c

2

k

2

� !

2

)

1��=2

(7.61)

Reassuringly T has dropped out. So as we move to the critical point at

T = 0, the resultant of the superposition of the multi-particle continua

is a single critical continuum characterized by the exponent �. This

spectral weight has precisely the form sketched in Fig 4.8 for the Ising

chain (the latter model had � = 1=4). Indeed the entire structure of the

T = 0 crossover from the quasiparticle pole and multiparticle continua
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to the critical continuum is essentially identical to that obtained earlier

for the Ising model.

7.2.2 Nonzero temperatures

Turning on a nonzero temperature introduces additional thermal damp-

ing to the spectral functions computed above, and results in a �nite

phase coherence time �

'

. We will �nd that the structure of these e�ects

is again remarkably similar to those studied earlier for the quantum Ising

chain in Sections 4.5.2 and 4.5.3.

First, we note some intermediate steps associated with the mechanics

of the computation. We shall be particularly interested in imaginary

parts of Green's functions. From (7.42) we get at T > 0

Im (�(q; !)) =

Z

d

2

q

1

16�"

~q

1

+~q

"

~q

1

[jn("

~q

1

+~q

)� n("

~q

1

)j�(! � j"

~q

1

+~q

� "

~q

1

j)

+(1 + n("

~q

1

+~q

) + n("

~q

1

))�(! � "

~q

1

+~q

� "

~q

1

)] (7.62)

where n(") is the Bose function

n(") =

1

e

"=T

� 1

; (7.63)

and the dispersion spectrum "

~q

is given by

"

2

~q

= c

2

q

2

+m

2

(7.64)

Notice that the T dependence of (7.62) arises from two sources: there

is that contained in the Bose function (7.63) re
ecting the T -dependent

occupation of the modes, and there is that due to the T dependence of

the `mass' m in (7.44) which changes the quasi-particle dispersion. We

will also need the generalization of (7.47) to �nite temperature where it

becomes:

Im�(k; !) =

1

2�

2

N

Z

d

2

q

"

~

k+~q

Z

1

0

d
Im

�

1

�(q;
)

�

h
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~

k+~q

)� n(
)j�(! � j"

~
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� 
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+(1 + n("

~
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) + n(
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~

k+~q

� 
)

i

(7.65)

We will �rst discuss in the physical properties of the above results in

the limit T � �

+

, i.e., in the low T regions on the quantum paramag-

netic side of Figs 5.2 and 5.3. In this case, it is easy to see from (7.62)

and (7.65) that all e�ects of temperature are exponentially suppressed,
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i.e., they are of order e

��

+

=T

or smaller; also the `mass' m � �

+

in

this region. This is easy to understand: there is a gap �

+

to all excita-

tions above the ground state, and all thermal e�ects are exponentially

suppressed. One of the most important consequences of a non-zero T

is the broadening of the quasi-particle pole in �(k; !) shown in Fig 4.1.

We will explicitly describe the nature of this broadening at k = 0. The

T = 0 pole is then at ! = "

0

= �

+

, and for ! � �

+

we can write � as

�(k; !) =

A

2"

0

1

("

0

� ! � i=�

'

)

; (7.66)

where

1

�

'

= �

1

2"

0

Im�(0; "

0

): (7.67)

Notice the similarity of (7.66) to the Ising chain result (4.106) and the

d = 1 rotor model result (6.30): as in the previous cases we have chosen

to de�ne the inverse phase coherence time, 1=�

'

, as the width of the

quasiparticle pole. We have included only the T -dependent corrections

to Im� and neglected those to Re�: this is because the former are

much more important for broadening at ! � �

+

, while the latter only

contribute a negligible correction to the overall spectral weight of the

quasi-particle feature. Evaluating 1=�

'

from (7.46), (7.62) and (7.65),

we �nd for T � �

+

1

�

'

=

2�Te

��

+

=T

N

�

1 + 2

Z

1

0

dy

e

�y

�

2

+ ln

2

(8�

+

=Ty)

�

(7.68)

Compare this with the exact result (4.88) in the corresponding region of

the quantum Ising chain (our de�nition of �

'

there was slightly di�er-

ent): the T dependence is essentially identical, and only the numerical

prefactors di�er. The latter need not agree, of course, as we are compar-

ing models in di�erent dimensions, and the prefactor in (7.68), unlike

that in (4.88), is not exact and contains only the leading term in a 1=N

expansion. There is also a subleading term with a 1= ln

2

(�

+

=T ) depen-

dence in (7.68): this logarithm is due to the T -matrix structure of a

dilute Bose gas in two dimensions (which the thermally excited quasi-

particles form), and its origin will be understood better in Chapters 9

and 11.

Finally, let us turn to the high T region, T � �

+

. In this case T be-

comes the most important energy scale and controls the entire structure

of the response functions. This is already apparent from the value of m
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in this limit: from (7.44) we have

m = �T (7.69)

where � = 2 ln[(

p

5 + 1)=2] � 0:962424 : : :. So the two energy scales

which determined spectral functions like (7.62) and (7.65), the mass m

and the temperature T in the Bose function, both become of order T . As

a result, it is evident by a simple rescaling of the variables of integration

in (7.62) that the propagator � satis�es

�(k; !) =

1

T

�

�

�

ck

T

;

!

T

�

(7.70)

Determination of the scaling function � requires complete evaluation

of (7.62), and it is not possible to make any further simpli�cations:

we therefore have to resort to numerical computation. In the limit

ck; ! � T , however, it is clear that � reduces to the �

+

= 0 limit

of (7.46). Very similar considerations also apply to the expression of

Im� in (7.65). The case of Re� is however somewhat more subtle: we

already saw this in the computation at T = 0 where we encountered a

logarithmic cuto� dependence. This was cured by expressing � is terms

of the quasi-particle residue A, or the amplitude Z, which led to the

result (7.59) with a subtraction which cancelled the cuto� dependence

in Re�. Indeed, we can use (7.59) to also evaluate � for T > 0: precisely

the same subtraction is still adequate to cancel the cuto� dependence.

The expression for (7.59) has to be evaluated numerically, and we will

not present the details of this here: they may be found in Ref [97]. The

result satis�es the scaling form (7.3) and yields numerical values for the

complex-valued scaling function �

+

at �

+

=T = 0.

We show the results of such a numerical evaluation in Fig 7.3. Notice

the strong similarity to the corresponding result for the quantum Ising

chain in Fig 4.9, for which we had the exact expression (4.114). There are

quasi-particle-like peaks with a width of order T : the typical excitation

has an energy of order T , and also a width of order T , so the quasi-

particles are, strictly speaking, not well de�ned. At very large !; ck � T ,

the spectrum crossover to the T = 0 result in (7.61), whose form was

sketched in Fig 4.8.

It should also be clear from the above discussion, that the phase co-

herence rate, 1=�

'

is of order T , as it is the only energy scale around.

We want to choose de�nition which yields �

'

= 1 at N = 1 as there

is no damping in this limit. Indeed as quasi-particles are well de�ned

at large, but �nite N , even in the high T limit, we may continue to use
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Fig. 7.3. Imaginary part of the scaling function �

+

in (7.3) as a function of

ck=T and !=T evaluated in the high temperature limit �

+

=T = 0. The func-

tion was computed in the 1=N expansion and evaluated at N = 3. Compare

with the exact answer for the d = 1 Ising model in Fig 4.9.

(7.67) as our de�nition of �

'

. Numerical evaluation yields

1

�

'

= 0:904

k

B

T

N�h

: (7.71)

where we inserted factor of k

B

and �h to emphasize that this result de-

pends only on fundamental constants.

Finally, we attempt to use the same expansion above to understand

the low frequency behavior of the spectral density Im�(k; ! ! 0), as was

done in Fig 4.10 for the quantum Ising chain. On general grounds, for

an interacting system at non-zero temperatures which has an internal

relaxational dynamics, we expect that �(k; !) is analytic as a function of

! at ! = 0; so the odd function Im�(k; !) � !, and lim

!!0

Im�(k; !)=!

is nonzero. This was found to be the case for the Ising chain in Fig 4.10.

However, the present large N expansion does not obey this require-

ment; evaluation of (7.65) shows that a low frequency spectral density

comes only from collisions of particles with very high momenta, and
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Fig. 7.4. Values of the correlation length, � (de�ned from the exponential

decay of the equal-time correlations of n), the uniform spin susceptibility, �

u

,

the phase coherence time, �

'

, and the spin di�usion constant, D

s

, for the two

regimes in Figs 5.2 and 7.1. The results in the quasi-classical wave regime

are quoted only for N = 3, and are asymptotically exact as T=�

s

! 0; other

results are obtained in a 1=N expansion, and applicable in principle to all N .

The 1=N corrections to the values for �

u

and � in the high T region were

not explicitly computed here, and are taken from Ref [97]. The values for D

s

in the quantum critical and quasi-classical particle regimes anticipate results

from Chapter 9, and in particular (9.11), (9.65) and (9.69). The order of

magnitude of D

s

in the quasi-classical wave regime follows from the general

scaling arguments in Section 7.1. Finally, �

u

in the quasi-classical particle

regime anticipates (9.14).
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their contributions are suppressed by exponentially small thermal fac-

tors. Speci�cally, we �nd [440] Im�(k; ! ! 0) � sgn(!) exp(�c=j!j),

for some constant c. This result is an artifact of the 1=N expansion,

which places undamped intermediate states in the decay rate compu-

tation in (7.65). Alternatively stated, even though the quasiparticles

scatter weakly in the large N limit, the low frequency relaxational dy-

namics of the order parameter n is strongly-coupled. This dynamics will

be discussed by alternative methods in Section 8.3.

7.3 Summary

As in previous chapters, we summarize the physical properties of the

regions of Fig 5.2 and 7.1 in a table in Fig 7.4. The evolution of the
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dynamic structure factor S(k; !) between the three regimes is quite sim-

ilar to that discussed for the d = 1 Ising model in Section 4.5.4. In

the quasi-classical particle regime, we have a narrow peak of width 1=�

'

at a frequency ! � �

+

. Conversely in the quasi-classical wave regime,

S(k; !) becomes a symmetric function of ! and is sharply peaked near

k = 0, ! = 0 with an exponentially large height, and an exponentially

small width. In the high T regime there is interesting structure for !; ck

of order T , and this will be discussed in Chapter 8.

7.4 Applications and extensions

The primary application of the d = 2 O(3) quantum rotor model has

been as a continuum theory of the square lattice Heisenberg antiferro-

magnet. The connection between these models will become clearer in

Chapter 13, but the link between antiferromagnets and quantum rotors

has already been motivated in Section 5.1.1.1.

In the low T region, T � �

s

, careful tests of the exact results (7.10)

and (7.20) for the correlation length have been made. The agreement

with neutron scattering measurements on the square lattice insulating

antiferromagnets La

2

CuO

4

[267] and Sr

2

CuO

2

Cl

2

is impressive. Much

higher precision comparisons can be performed against state of the art

quantum Monte Carlo simulations and these have been discussed re-

cently in Refs [45] and [269]. The low T dynamical properties discussed

in Sections 7.1.2 and 7.1.3.2 were applied to NMR relaxation rates in

Ref [84], and compared against measurements in La

2

CuO

4

in Ref [238].

We turn next to the `high T ' region of the continuum quantum rotor

model. We discussed strong thermodynamic evidence for the existence

of this region in the intermediate temperature properties of the S = 1=2

square lattice antiferromagnet in Section 5.5. The high T computa-

tions discussed in Section 7.2 were used to compute NMR relaxation

rates [97, 99] and found to be in good agreement with measurements

on La

2

CuO

4

[238, 239]. It has been more di�cult to disentangle the

crossover from low T to high T in experimental measurements of the

correlation length, as was pointed early on in Ref [96], and this has been

discussed further in Refs [189, 269, 414]. The issue of the `low T ' to

`high T ' crossover in square lattice antiferromagnets was also examined

in series expansion studies by Sokol et al. [467] and Elstner et al. [135],

and evidence was obtained its existence in a number of static correla-

tors for spin S = 1=2. Interestingly, no such evidence was found for the
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S = 1 case, which (as expected) is clearly too far from the quantum

critical coupling.

The computations of this chapter can also be cautiously, but usefully,

compared with measurements on lightly doped antiferromagnets [97],

the idea being that the primary e�ect of doping is to change the bare

coupling g to a value closer to the quantum critical point [420]. In-

elastic neutron scattering measurements [220, 267] have observed a fre-

quency dependent susceptibility which is consistent with the general

scaling forms (7.1) and (7.3), for a vanishing value for their third ar-

guments. More recently, exciting new measurements [2] also see high T

scaling (with characteristic ! � T and k � T

1=z

) at much higher doping,

possible due to proximity to a incommensurate charge or spin ordered

state. The large N prediction for the scaling function in Fig 7.3 has

weight at frequencies ! � T and negligible weight at ! � T , implying a

`pseudo-gap' in the spin excitation spectrum. However, this cannot be

treated as a reliable experimental prediction yet, as the large N expan-

sion was argued to be invalid for ! � T . We will put this issue on a

�rmer footing in our discussions in Section 8.3 and 8.4.



8

Physics close to and above the upper-critical

dimension

We brie
y introduced the concept of the upper-critical dimension in

Section 5.2: there we saw in a study of the large N limit that physical

properties did not satisfy the simplest scaling predictions, and acquired

additional cut-o� dependencies in physical response functions above spa-

tial dimension d = 3. We will show in this chapter that it is possible

to describe the physics in d > 3 by a relatively straightforward pertur-

bative method. The same perturbative analysis is also useful for d < 3

provided

� = 3� d (8.1)

is not too large; the perturbation theory has to be combined with a

renormalization group analysis in this case.

The physics described by this perturbative method can, in most cases,

also be elucidated by the large N expansion we have developed in the

previous chapters. However, there are a number of instances where the

underlying principles are most transparently illustrated by studies close

to and above d = 3. Our speci�c reasons for undertaking such an analysis

are:

� As we have noted earlier, the quantum critical point at T = 0, g = g

c

,

extends out to a line of �nite temperature phase transitions for the

cases d = 2, N = 1; 2. The � expansion o�ers a controlled method

obtaining the structure of the crossovers in the vicinity of this line.

� We have not yet found a successful description of the low frequency

dynamics of the order parameter (n or �

z

) in the high T regime in

d = 2, although we did succeed in d = 1 in Chapters 4 and 6. We

shall show in Section 8.3 that the �-expansion leads to an appealing

quasi-classical wave description of this dynamics.

194
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� For the quantum rotor models being studied here, the crossovers above

the upper-critical dimension, with d > 3, are obviously in a physically

inaccessible dimension. However the basic structure that will emerge

is quite generic to quantum critical points above their upper-critical

dimension. The results will therefore be useful in Part 3 where we will

consider other models with a lower upper-critical dimension, so that

dimensions above the upper-critical can be experimentally studied.

� The following chapter will study transport properties of the quantum

rotor models in the high T and quantum-paramagnetic low T regions

in d = 2. While it is possible to do this within the 1=N expansion,

the computation is simplest, and most physically transparent, using

the � expansion we shall develop here.

The study in this chapter will use the `soft-spin' formulation of the

continuum theory of the vicinity of the quantum critical point that was

noted in Section 3.1. The theory is expressed in terms of a N component

�eld �

�

(x; �) (� = 1 : : :N) which is related to the lattice quantum rotor

�eld n

i

by the coarse-graining transformation (3.10); forN = 1, a similar

relationship holds between the Ising spin �̂

z

i

and a one-component �eld

�. We shall study the quantum mechanics of the �

�

�eld as speci�ed by

the imaginary time path integral in (3.11), which is reproduced here for

completeness

Z =

Z

D�

�

(x; �) exp(�S

�

);

S

�

=

Z

d

d

x

Z

�h=k

B

T

0

d�

�

1

2

�

(@

�

�

�

)

2

+ c

2

(r

x

�

�

)

2

+ r�

2

�

(x; �)

�

+

u

4!

(�

2

�

(x; �))

2

o

: (8.2)

The structure of this �eld theory is similar to that of the continuum the-

ory (3.12) or (5.16) for the �xed-length n �eld, with the main di�erence

being that the �xed-length constraint has been dropped, and replaced

instead by a quartic self-interaction u. The equivalence of the universal

properties of these two formulations is a well-established principle in the

theory of classical critical phenomena [65, 63]: this equivalence can be

expected on general universality grounds, as the two models display a

quantum critical point between a magnetically ordered and a quantum-

paramagnetic phase with precisely the same symmetry structures and

spectrum of low-lying excitations. We will also explicitly see examples

of the equivalence in our computations with (8.2) in this chapter. In

practical terms, this equivalence means that the susceptibility �(k; !),
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de�ned as the two-point correlator of the �eld �

�

satis�es, for d < 3,

the scaling forms (7.1), and (7.3), with precisely the same scaling func-

tion �

�

: we shall compute here some features of these scaling functions

in an expansion in �, while they were computed in a 1=N expansion in

Chapter 7. The approaches have been compared in the overlapping re-

gion of validity where both � and 1=N are small, and exact agreement

is found|this shall not be shown explicitly here, however.

The theory (8.2) can also be extended by adding additional terms

involving higher powers or gradients of �

�

: all of these can be shown to

be irrelevant for d < 3 using arguments which are very similar to those

we discussed in Section 4.3 for the continuum theory of the quantum

Ising chain.

We restrict ourselves in this chapter to results to the leading order in

� or u: the structure of the quantum/classical crossovers is quite com-

plicated at higher orders, and the reader is referred to discussions in

Ref. [427] for a discussion of this subtle issue; alternative approaches

are also available [294, 369, 169]. Further, we will limit our discussion

to regions of the phase diagram where there is no spontaneous magne-

tization, and complete O(N) symmetry is preserved (the extension to

ordered phases is straightforward). We will therefore be approaching the

�nite temperature phase boundaries from their high temperature side.

We will begin in Section 8.1 by a discussion of the T = 0 properties of

(8.2): these are simply related to those obtained by interpreting (8.2) as

a classical statistical mechanics problem in D = d+1 dimensions. Such

results are standard and in-depth reviews are available [550, 247, 63], so

Section 8.1 will only contain a brief discussion of the needed concepts.

Section 8.2 will then provide a description of the � expansion for the

crossovers in the static properties of (8.2) at T > 0; this expansion gives

a useful qualitative picture, but is not particularly accurate in d = 2, and

also fails for low frequency dynamical properties. These de�ciencies will

be repaired in Section 8.2, where we will use the � expansion to motivate

an e�ective model for statics and dynamics which will be solved exactly

in d = 2.

We will use units in which the velocity c = 1 throughout the remainder

of this chapter only.

8.1 Zero temperature

We will work in imaginary time throughout this section. We will express

the response functions in terms a D = (d + 1)-dimensional wavevector
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Q = (i!; ~q). At T = 0, all correlators of the action (8.2) are invariant un-

der D-dimensional rotations in Euclidean space, and are therefore only

functions of Q

2

= q

2

+ (i!)

2

= q

2

� !

2

. Dynamic quantum response

functions are obtained by analytically continuing to negative Q

2

. For

positive Q

2

the responses are, of course, those associated with interpret-

ing (8.2) as a classical statistical mechanics problem.

We will begin in subsection 8.1.1 by a discussion of ordinary pertur-

bation theory in u. We will �nd that the results are adequate for D > 4,

but suggest that higher-orders have to be resummed for D < 4. The

resummation will be done using the 1=N expansion in subsection 8.1.2,

where we will also introduce the important concept of the so-called `tri-

critical crossover functions'. Finally, in subsection 8.1.3 we will present a

very concise review of the �eld-theoretic renormalization group approach

to resumming the perturbation theory in u.

8.1.1 Perturbation theory

The two-point correlator of �

�

under (8.2) de�nes, as in (5.2), the sus-

ceptibility �

��

(Q) (this single argument, D-dimensional susceptibility

should not be confused with the static susceptibility of the d-dimensional

quantum problem de�ned in (4.8); the former will always have an argu-

ment with a capital letter). In the O(N) symmetric region this satis�es

�

��

= ��

��

. To zeroth order in u, this is

�(Q) =

1

Q

2

+ r

: (8.3)

The static susceptibility diverges at r = 0, so to this order in u, the

paramagnetic phase is present for r > 0, and the quantum-critical point

to the ordered phase is at r = 0; this is, of course, the familiar mean-�eld

theory result. Indeed, the parameter r shall play a similar role to the

tuning parameter g of the �xed-length theory (5.16): the point g = g

c

corresponds to r = r

c

, and to zeroth order in u, we have r

c

= 0.

Let us discuss corrections due to a non-zero u. As we will see, the

theory (8.2) requires a short distance cut-o� at a momentum scale �,

and this cut-o� sets a natural scale for u. In D dimensions, simple

dimensional analysis of (8.2), shows that � has the engineering dimension

of (length)

(2�D)=2

; so u has the engineering dimensions of (length)

(D�4)

,

and a natural scale for u is �

(4�D)

. This suggests that a perturbative

approach might be valid for

u� �

(4�D)

; (8.4)
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Fig. 8.1. Feynman diagram leading to the �rst order correction in the suscep-

tibility in (8.5), and to the value of R in (8.24).

and we will assume this condition here. Improving the result (8.3) to

�rst order in u we have from the diagram in Fig 8.1

�

�1

(Q) = Q

2

+ r + u

�

N + 2

6

�

Z

�

d

D

K

(2�)

D

1

K

2

+ r

: (8.5)

The divergence of the susceptibility identi�es the quantum-critical point

at r

c

which to �rst order in u is

r

c

= �u

�

N + 2

6

�

Z

�

d

D

K

(2�)

D

1

K

2

: (8.6)

Now let us introduce the coupling s

s � r � r

c

(8.7)

which measures the deviation of the system from the critical point.

Rewriting (8.5) in terms of s rather than r (we will always use s in

favor or r in all subsequent analysis), we have

�

�1

(Q) = Q

2

+ s+ u

�

N + 2

6

�

Z

�

d

D

K

(2�)

D

�

1

K

2

+ s

�

1

K

2

�

: (8.8)

We are interested in the vicinity of the critical point, at which s ! 0,

and the nature of this limit depends sensitively on whether D is greater

than or less than four. For D > 4, we can simply expand the integrand

in (8.8) in powers of s and obtain

�

�1

(Q) = Q

2

+ s

�

1� c

1

u�

D�4

�

; (8.9)

where c

1

is a non-universal constant dependent upon the nature of the

cuto�. So the e�ects of interactions appear to be relatively innocuous:

the static susceptibility still diverges with the mean-�eld form �(0) �
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1=s as s! 0, and the correction to the co-e�cient is small, given (8.4).

This is in fact the generic behavior to all orders in u, and mean-�eld

critical properties apply for D > 4; however, we will see later that there

are interesting, universal 
uctuation e�ects at T > 0 even for D > 4.

For D < 4, we notice that the integrand in (8.8) is convergent in the

ultraviolet, and so under the condition (8.4) it is permissible to send

�!1. We then �nd that the correction �rst order in u has a universal

form

�

�1

(Q) = Q

2

+ s

�

1�

�

N + 2

6

�

2�((4�D)=2)

(D � 2)(4�)

D=2

u

s

(4�D)=2

�

: (8.10)

So we notice that no matter how small u is, the correction term even-

tually becomes important for a su�ciently small s, and indeed diverges

as s ! 0. The structure of (8.10) can be understood by noting from

(8.8) that the correlation length for small u is �

0

= s

�1=2

and this sets

a regime u � �

�(4�D)

0

over which perturbation theory is valid. So for

su�ciently large �

0

, the mean �eld behavior cannot be correct, and a

sophisticated resummation of the perturbation expansion in u is neces-

sary. When we turn later to an analysis at T > 0 however, we will �nd

that the result (8.10) is adequate over a substantial portion of the phase

diagram.

8.1.2 Tricritical crossovers

For D < 4, the structure of (8.10) suggests that we can express the most

important terms at higher-order in u for the static susceptibility in the

form

�

�1

(Q) = s	

D

�

Q

s

1=2

;

u

s

(4�D)=2

�

(8.11)

where 	

D

(q; v) is a universal crossover function. This form is consistent

with naive dimensional analysis, and the expectation that it is permissi-

ble to send �!1 in all the singular terms at higher orders. The result

(8.10) gives us the small v behavior of 	

D

(q; v):

	

D

(q; v) = q

2

+ 1�

�

N + 2

6

�

2�((4�D)=2)

(D � 2)(4�)

D=2

v +O(v

2

) (8.12)

To get the critical properties of the model for D < 4, however, we need

its large v behavior.

The function 	

D

(q; v) is the so-called \tricritical crossover" function
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of Refs. [363, 68]: this terminology is motivated by considerations unre-

lated to those of interest here, and will not be explained. Computation

of 	

D

(q; v) by various methods are described in the literature [363, 68]:

we will simply treat 	

D

(q; v) as a known function, and will �nd that

some key properties of the T > 0 crossovers near the quantum critical

point can be expressed in terms of it. For completeness, we note how

	

D

(q; v) may be computed in the large N limit, with vN �xed. The

computation proceeds by a familiar approach: we decouple the quartic

term in (8.2) by a Hubbard-Stratanovich �eld � so that

Z =

Z

D�D�

�

(x; �) exp(�

e

S

�

)

e

S

�

=

Z

d

D

x

�

1

2

�

(@

�

�

�

)

2

+ c

2

(r

x

�

�

)

2

+ (r + i�)�

2

�

(x)

�

+

3�

2

2u

�

; (8.13)

Now, integrate out the �

�

�elds, which appear only as quadratic terms

in (8.13); evaluating the integral over � as a saddle-point, we obtain the

required large N limit. Expressing the result in terms of s using (8.7),

we can easily show that 	

D

(q; v) is given by

	

D

(q; v) = q

2

+�

D

(v); (8.14)

where the function �

D

(v) is given by the solution of the following non-

linear equation:

�

D

(v) +Nv

�((4�D)=2)

3(D � 2)(4�)

D=2

[�

D

(v)]

(D�2)=2

= 1 (8.15)

Notice that as v !1, �

D

(v) � v

�2=(D�2)

, and inserting in (8.11), this

implies that �

�1

(0) � s

2=(D�2)

as s ! 0. This result agrees with our

earlier large N result in (5.34), and the N =1 relation �

�1

(0) � �

+

.

8.1.3 Field-theoretic renormalization group

The basic ideas behind this approach were already presented in Sec-

tion 6.3.1 in the context of the d = 1 quantum rotor model, along with

suggestions for further reading in the literature. Readers who skipped

Chapter 6 should now read Section 6.3.1 until Eqn (6.40).

As before, it is advantageous to replace the cut-o� � by a renormal-

ization scale, � at which various observable parameters are de�ned. At

the scale � we introduce renormalized couplings, which then replace the
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bare couplings in all expressions for observable quantities: once this sub-

stitution has been performed, it is possible to send the cuto� � ! 0,

order-by-order in an expansion in the non-linearities. In practice, one

never needs to introduce � at intermediate stages as all integrals are per-

formed in dimensional regularization in D = 4� � dimensions. We will

only work to �rst order in � here, in which case only two renormalized

couplings are necessary: s

R

, a renormalized measure of the deviation

of the system from the quantum critical point, and u

R

a renormalized

four-point interaction. The explicit relationship between the bare and

renormalized couplings is [63]

u = u

R

�

�

S

D

�

1 +

N + 8

6�

u

R

�

s = s

R

�

1 +

N + 2

6�

�

(8.16)

A factor of �

�

has been scaled out u so that u

R

is dimensionless, and

S

D

= 2=[�(D=2)(4�)

D=2

is standard phase-space factor, introduced for

notational convenience.

We can state the simple, �eld-theoretic recipe for computing corre-

lators of (8.2). First, obtain formal expressions for the bare theory in

terms of s and u, leaving integrals unevaluated. Then, perform the sub-

stitution in (8.16) to expressions in terms of u

R

and s

R

. Now, evaluate

all the integrals in D = 4� � dimensions, in powers of �. The constants

in (8.16) have been cleverly chosen so that all poles in � cancel. The

resulting expressions for the correlators of the theory are expressed in

terms of s

R

, u

R

, and the momentum scale �.

Exact renormalization group equations for all observables can be ob-

tained by the fact that no physical quantity can depend upon the value

of �. By studying the behavior of the �rst equation in (8.16) under

�! �e

`

we obtain the 
ow equation

du

R

d`

= �u

R

�

�

N + 8

6

�

u

2

R

(8.17)

A simple analysis of this di�erential equation shows that at long dis-

tances (` ! 1), the coupling u

R


ows to the attractive �xed point

at

u

�

R

=

6�

(N + 8)

(8.18)

This implies that a theory with u

R

= u

�

R

and s = 0 does not 
ow

under rescaling transformations, and is therefore scale-invariant. This
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speci�es the universal quantum-critical point of theory. Turning on a

s > 0 induces 
ow along the leading relevant direction, and therefore

determines the T = 0 energy gap; deviations in u from u

R

correspond

to allowing corrections associated with the leading irrelevant operator,

and can therefore be ignored in computations of the universal scaling

functions.

Let us apply the above approach explicitly to the computation of

�(Q). We begin with the expression (8.8) and make the substitution in

(8.16). Working to linear order in u

R

, and evaluating the integrals in an

expansion in � = 4�D, we can write the result in the form

�(Q) =

1

Q

2

+�

2

+

(8.19)

where �

+

is the T = 0 gap of the quantum paramagnetic phase with

s > 0. The explicit expression for �

+

is

�

2

+

= s

R

�

1 + u

R

(N + 2)

12

ln

�

s

R

�

2

��

; (8.20)

where there is no additive term of order u

R

associated with the loga-

rithm. Precisely at u

R

= u

�

R

the scale-invariance of the theory implies

that it is permissible to re-exponentiate the logarithm (as was done in

the large N expansion in (7.55)), in which case we can write

�

+

= �

�

s

R

�

2

�

�

(8.21)

where � is the usual correlation length exponent, de�ning how the gap

vanishes at s

R

= 0 (recall that this theory has z = 1); it is given to this

order in � by

� =

1

2

+

(N + 2)

4(N + 8)

� (8.22)

These results imply, from (8.11) that 	

D

(v ! 1) � v

�2(2��1)=(4�D)

�

v

�(N+2)=(N+8)

to leading order in 4�D.

8.2 Statics at nonzero temperatures

This section will describes the results of the � expansion on the nonzero

temperature properties of (8.2). The results are helpful in exposing the

general structure of the theory, but are not expected to be very accurate

in d = 2 (� = 1). An improved, and quantitatively more accurate
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treatment will appear in Section 8.2.1, which will also consider dynamic

properties.

We shall describe the T > 0 static correlators proceeds [427] by a

method adapted from an approach developed by Luscher [312] (related

methods were also applied by others to study classical systems in �nite

geometries [66, 418]). Readers of Chapters 6 and 7 will recall that a

similar method was used in Sections 6.3 and 7.1. The main idea is to in-

tegrate out the components of �

�

(x; �) with a non-zero frequency along

the imaginary time direction by a straightforward � expansion to the

vicinity of the quantum critical point. This will result in an e�ective

action for the zero frequency component �

�

(x) (which is independent of

�), which must subsequently be analyzed more carefully. The correlators

of the this zero frequency e�ective action will yield the static suscepti-

bility, �(k). It must be noted that, unlike the situation in Section 4.5.1,

this static susceptibility does not yield the equal time correlations, as

the relationship (4.92) will not hold in general.

As we are only interested in the universal crossovers in the vicinity of

the point s = 0, T = 0, for D < 4, we can set u

R

= u

�

R

at the outset;

further as u

R

� �, the derivation of the e�ective action for �

�

(x) can

be performed in an expansion in powers of the non-linear coupling u

R

.

For D > 4 the mean-�eld behavior of the system at T = 0 suggests

that an expansion in powers of u should be adequate for T > 0, and

we shall indeed �nd that this is the case. A simple, one-loop, pertur-

bative calculation then gives the following e�ective action for the static

correlators:

Z =

Z

D�

�

(x) exp(�S

�;e�

)

S

�;e�

=

1
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Z

d

d
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�
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2
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�

)

2

+

e
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2

�

(x)

i

+

U

4!

(�

2

�

(x))

2

�

: (8.23)

The couplings

e

R and U can be expressed in terms of the bare couplings

in the quantum action (8.2):

e

R = r + u

�
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X

�

n

6=0

Z

d

d
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(2�)

d

1

�

2
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N + 8
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6=0

Z

d

d

k

(2�)

d

1

(�

2

n

+ k

2

+ r)

2

: (8.24)

The result for

e

R arises from the diagram in Fig 8.1, and that for U

from Fig 8.2, where the internal lines carry only non-zero Matsubara
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Fig. 8.2. Feynman diagram leading to the coupling U in (8.24).

frequencies. We will discuss the evaluation of these expressions shortly.

For the moment, let us simply retain the formal expressions in (8.24),

and proceed a bit further. Now notice that the e�ective action (8.23)

has precisely the same form as the original theory (8.2) at T = 0: the

only, and crucial, di�erence is that the spacetime dimension D has been

replaced by the spatial dimension d. Therefore, the theory (8.23) can be

analyzed by the perturbative method of Section 8.1.1, or by the tricritical

formulation of Section 8.1.2 simply by performing the replacement D !

d, and by a relabeling of the coupling constants. Using these methods, it

is easy to get formal expressions for the equal-time correlators resulting

from S

�;e�

. We �rst de�ne a shift in the value of the mass, as in (8.6)

and (8.7):

R =

e

R+ U

�

N + 2

6

�

Z

d

d

k

(2�)

d

T

k

2

: (8.25)

Then the equivalence between (8.23) and (8.2) at T = 0, and the re-

sponse function (8.11) of the latter tells us that the static susceptibility,

de�ned in (4.8) is given by

�(k) =

1

R

	

�1

d

�

k

R

1=2

;

TU

R

(4�d)=2

�

: (8.26)

As noted earlier, we regard 	

d

as a known function, and so (8.26) con-

strues the �nal solution of the crossovers of the static observables (8.2)

at �nite temperature in the region without long-range-order. We em-

phasize again that 	

d

has to be computed in the spatial dimension d,

and not the spacetime dimensions D = d + 1 which was considered in

Section 8.1. The large N solution of 	

d

(q; v) was given in (8.14,8.15),

and is valid for all values of v: however, we will �nd below that the exact

perturbative result (8.12) (valid for small v), is in fact su�cient over a

substantial portion of the phase diagram.

The transition to the phase with long-range order will be signaled by

a divergence in �(k = 0). The general structure of (8.26) tells us that
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this will happen at a value R = R

c

, with R

c

� (TU)

2=(4�d)

(the missing

coe�cient is a universal number determined by the function 	

d

). The

N =1 result (8.15) has R

c

= 0, and this is also found to leading order

in the 4� d expansion for tricritical crossovers. We will assume R

c

= 0

in our discussion in this section below, and corrections due to a non-zero

R

c

are higher order in �. So the result (8.26) is valid provided R > 0,

and the condition R = 0 gives the boundary of the �nite temperature

phase transition to the ordered phase.

It remains to compute the values of the couplings R, U to complete

our description of static correlations, and the associated phase diagram

of (8.2) in the r; T plane. We will consider the cases d < 3 and d > 3

separately, as the results are substantially di�erent.

8.2.1 d < 3

We �rst determine the value of R for d < 3. The expression for R

is given in (8.24) and (8.25), and to evaluate it in the scaling limit,

we use precisely the same prescription discussed earlier in Section 8.1.3

for the T = 0 computation: the spatial integrals are evaluated in d =

3 � � dimensions, the couplings are expressed in terms in terms of the

renormalized parameters as de�ned in (8.16), an expansion is made in

powers of �, and �nally the resulting expression is evaluated at the �xed

point value (8.18). Just as at T = 0, the poles in � cancel also at T > 0,

and to �rst order in �, the result is

R = s

R

�

1 + �

�

N + 2

N + 8

�

ln

�

T

�

��

+ �T

2

�

N + 2

N + 8

�

G

�

s

R

T

2

�

(8.27)

where the function G(y) is given by

G(y) =

y ln y

2

+ 4

Z

1

0

k

2

dk

 

1

p

k

2

+ y

1

e

p

k

2

+y

� 1

�

1

k

2

+ y

+

1

k

2

!

(8.28)

We have obtained this expression assuming that s

R

> 0 (and therefore

y = s

R

=T

2

> 0), and the result forG(y) appears to have some singularity

at y = 0. We shall shortly establish that this is not the case: a crucial

property of the function G(y) is that it is analytic at y = 0, and can

therefore be analytically continued to y < 0. There is an important

physical reason for this analyticity, and it is a key step in our analysis.

Recall that at T = 0, there was a quantum phase transition in (8.2) at

s

R

= 0 (r = r

c

from (8.7)), and so all response functions are certainly
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non-analytic at s

R

= 0. However, we are considering the case T > 0,

and we expect that there is no thermodynamic singularity at r = r

c

:

the critical 
uctuations surely get quenched at a non-zero T , and all

observables should have a smooth, well-behaved dependence on r at r =

r

c

for T > 0, as we saw in the case of the Ising chain in Chapter 4. There

will eventually be a non-zero T phase transition for some s

R

< 0 (r < r

c

)

as in Fig 5.3, and so there should be a thermodynamic singularity at

this point. However, the latter singularity is a property of the scaling

function 	

d

in (8.26), and not a singularity in the value of the coupling

R. So if our physical interpretation is correct, G(y) should be analytic

at y = 0, and it should be possible to analytically continue G(y) to all

y < 0 until the point we hit the transition to the ordered phase where

R, as de�ned in (8.27), �rst vanishes.

We explicitly demonstrate that the expectation above is indeed satis-

�ed by (8.28) (indeed, our entire analysis of the crossover problem was

carefully designed that this would occur). After an integration by parts

under the integral in (8.28), and some elementary manipulations, it can

be shown that G(y) can be transformed into the following:

G(y) = �

Z

1

0

dk

"

4 ln

 

k

sinh(

p

k

2

+ y=2

p

k

2

+ y=2

!

� 2k �

y

p

k

2

+ 1=e

#

(8.29)

In this form, it is not di�cult to see that G(y) is analytic at y = 0; the

function sinh(

p

z)=

p

z is a smooth function of z near z = 0, and equals

sin(

p

jzj)=

p

jzj for z < 0, and so there is no singularity in the integrand

as y goes through zero. Indeed G(y) is smooth for all y > �2�, with

the singularity arising at �2� when the argument of the logarithm �rst

turns negative. We will �nd below that the transition to the ordered

phase occurs for y � ��, so the singularity at y = �2� occurs well

within the ordered phase where the present results cannot be used, and

is therefore of no physical consequence. We also note here some limits

of (8.29) which will be useful later

G(y) =

�

2�

2

=3 + 2:45381y jyj � 1

(y=2) ln y + 2�

p

y + y

1=4

p

8�e

�

p

y

y � 1

(8.30)

While we have a fairly complete picture of the function G(y), the re-

sult (8.27) for R is still not ready to be used as it involves the unknown

momentum scale �. To remedy this, we recall a basic strategy used

throughout this book: all correlators should be expressed in terms of

observable parameters characterizing the T = 0 ground state. In the
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present situation we should clearly replace s

R

as a measure of the devi-

ation from the T = 0 quantum critical point at s

R

= 0, by the energy

scales �

�

which were discussed in Chapter 5. We will only do this here

for s

R

> 0 (the case s

R

< 0 is discussed in Ref [427]): the relationship

between s

R

and the energy gap of the quantum paramagnet, �

+

, was

obtained in (8.21). Substituting (8.21) into (8.27) we �nd

R = �

2

+

�

1 + �

�

N + 2

N + 8

�

ln

�

T

�

+

��

+�T

2

�

N + 2

N + 8

�

G

�

�

2

+

T

2

�

: (8.31)

The dependence on the arbitrary scale � has disappeared, and we have

the required universal dependence of R on �

+

and T for s

R

> 0 (r > r

c

).

A similar relationship exists between the scale �

�

and R for r < r

c

[427].

A closely related computation can be performed for the quartic cou-

pling U in (8.23) using the expression in (8.24). At the �xed point

u

R

= u

�

R

we again �nd that the � dependence disappears:

U =

6�T

�

S

D

(N + 8)

�

1 + �

20 + 2N �N

2

2(N + 8)

2

+ �G

0

�

s

R

T

2

�

�

; (8.32)

where G

0

(y) is derivative of G(y), and we have actually used the expres-

sion for u

�

R

to order �

2

to obtain the complete result above. For s

R

> 0

we can simply substitute s

R

= �

2

+

in the argument of G

0

to get the

universal expression for U .

We have assembled all the ingredients to obtain the full crossover

structure for the static susceptibility at T > 0: we use the expressions

(8.27) or (8.31) for R, and the expression (8.32) for U , substitute them

into (8.26), with results for the tricritical crossover function 	

d

obtained

in Section 8.1.2. A straightforward examination of the resulting expres-

sions yields the phase diagram shown in Fig 8.3, which is closely related

to the phase diagram obtained earlier in the largeN limit in Fig 5.3. The

physical properties of the regimes were already discussed in Section 5.4,

and we note their properties for small � in turn below.

The low T regime on the quantum paramagnetic side was discussed in

Section 5.4.1: it is present for T � �

+

� (r � r

c

)

�

. Using (8.30-8.32),

we have for this case

R � �

2

+

U � ��

�

+

TU=R

(4�d)=2

� �T=�

+

� 1 (8.33)

The last quantity is that appearing in the argument of the tricritical

scaling function, 	

d

, in (8.26). As it is small, it is evident that a simply
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T

r
r

0
MAGNETIC
LONG RANGE ORDER

c

CONTINUUM
     HIGH T
         or
  QUANTUM
   CRITICAL

LOW T QUANTUM
PARAMAGNET

Quasi-classical particles

Quasi-classical
particles (N=1)
or waves (N>1)

Fig. 8.3. Phase diagram of the theory (8.2) for d < 3 (compare with the large

N phase diagram in Fig 5.3. The qualitative features are expected to apply

to d > 1 for N = 1, d � 2 for N = 2, and d > 2 for N � 3. The quantum

critical point is at T = 0 with coupling r = r

c

(this is also the coupling

where s = s

R

= 0). All properties are however analytic as a function of r

at r = r

c

for T > 0. The dashed lines are crossovers at T � jr � r

c

j

z�

,

as is the full line, which is the locus of �nite temperature phase transitions

at T

c

(r). The shaded region is where the reduced classical scaling functions

apply. The region T > T

c

(r), but r < r

c

is accessed in our calculation by

analytic continuation from r > r

c

, T > 0. The simple perturbative expression

in (8.10)) can be used in (8.26) for the static susceptibility everywhere in

the paramagnetic region, except for the shaded portion. The low T region

for r > r

c

has a quasi-classical particle description as in Section 4.5.2, and

to be discussed in Chapter 9. In the magnetically ordered low T region for

r < r

c

and N � 2, the long-wavelength spin waves about the ordered state

behave classically, while for N = 1, the amplitude oscillations in �

�

about

its non-zero mean value lead to a quasi-classical particle. As we noted in

Fig 7.1, the `continuum high T ' or `quantum critical' region is more complex,

with thermal and quantum, and particle- and wave-like phenomena playing

equal roles. In Section 8.3 we shall show that, to leading order in � = 3� d,

the low frequency correlators of �

�

in this region are described an e�ective

quasi-classical wave model; however, the transport of the conserved angular

momentum is dominated by higher energy excitations, and requires a particle-

like description in a quantum Boltzmann equation which will be discussed in

Chapter 9.
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perturbative evaluation of 	

d

in (8.12) is adequate for analyzing static

properties in this regime. Using (8.12) and (8.30-8.32) in (8.26) we get

�

�1

(k) = k

2

+�

2

+

+ �

�

N + 2

N + 8

�

T (8�T�

+

)

1=2

e

��

+

=T

: (8.34)

So there is only a correction of order e

��

+

=T

to the T = 0 response: sim-

ilar results were obtained in the large N limit in Section 5.4.1. This ex-

ponentially small correction arises from the small density of pre-existing

thermally excited particles. For the same reasons as those discussed

in Section 4.5.2 (and also Section 6.2), we expect that these particles

form a Boltzmann gas, whose static and dynamic properties can be de-

scribed by standard classical methods: we will see this in our discussion

of transport properties in Chapter 9.

Next we turn to the high T regime of the continuum theory T �

jr � r

c

j

�

. Now, the analogs of the estimates (8.33) are

R � �T

2

U � �T

�

TU=R

(4�d)=2

�

p

�� 1: (8.35)

So again, the second argument of 	

d

is small, and a perturbative eval-

uation is permissible. Using (8.12) and (8.30-8.32) in (8.26) we get

�

�1

(k) = k

2

+ �

�

N + 2

N + 8

�

2�

2

T

2

3

(8.36)

to leading order in �, which implies a correlation length � � 1=

p

�T .

The almost free nature of this static result suggests that thermal 
uc-

tuations are non-critical and can be treated in an e�ectively Gaussian

theory. However, when the present perturbative approach is extended

to dynamical properties, one �nds that it fails in the low frequency

limit [427] (just as we found for the 1=N expansion in Section 7.2.2).

The strongly coupled dynamical problem will be treated in Section 8.3,

and associated transport properties in Chapter 9.

Finally, we turn to a novel part of the analysis using the � expansion:

the region of the phase without long-range order for r < r

c

. Now s

R

< 0,

and it is possible for R to vanish. Using (8.27), we �nd that this happens

at s

R

= s

Rc

given by

s

Rc

= ��

�

N + 2

N + 8

�

2�

2

T

2

3

(8.37)

to leading order in �; this relationship can be translated into a universal
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proportionality between T

c

and �

�

, but we will not discuss that here.

The value of s

Rc

determines the phase transition line T = T

c

(r) shown

in Fig 8.3. The order of magnitude estimates of the couplings in (8.35)

remain valid for T > T

c

(r) except that the omitted co-e�cient in the

�rst expression of R vanishes as one approaches T

c

(r) from above. A

simple estimate of the dimensionless coupling in the argument of 	

d

then shows that the perturbative computation of 	

d

fails when (T �

T

c

(r)) � �T

c

(r). This condition delineates the boundary of the shaded

region shown in Fig 8.3. Within this region there is the well-understood

classical physics of a �nite temperature phase transition in d spatial

dimensions: it will described by the appropriate classical singularity of

	

d

discussed in Section 8.1.3 (we note again that these latter results

have to be used in d rather than D dimensions; thus this emergence of

classical statistical mechanics is completely unrelated to theQC mapping

of Section 3.2, which mapped d-dimensional quantum mechanics to D-

dimensional classical statistical mechanics). From the perspective of the

global quantum scaling functions like (5.60), the shaded regime is where

the reduced classical scaling functions will apply.

While (8.37) contains the leading prediction of the � expansion for

value of the critical temperature T

c

(r), the result is not satisfactory in

one important respect. Note that we �nd a T

c

> 0 for all N . This is

the correct result for 2 < d < 3, but is incorrect precisely in d = 2, the

dimensionality of physical interest. In d = 2 we should �nd T

c

= 0 for

all N � 3, as we found in the large N expansion in Chapters 5 and 7.

This failure suggests that the estimate (8.37) for T

c

is not very accurate

for d = 2, N = 1; 2. We will rectify this failure in Section 8.3, where we

will treat the e�ective theory (8.23) directly in d = 2. This can be done

by a variety of analytical and numerical methods [431], which lead to

quite accurate results for d = 2, N = 1; 2.

8.2.2 d > 3

This is obviously an unphysical regime, but we discuss it brie
y to note

the physics of models above their upper-critical dimension. We will

later meet models whose quantum-critical points have a lower value for

the upper-critical dimension, and their properties will be quite similar

to those found here. We will assume here that d < 4, so that the

classical �nite-temperature transition remains below its upper-critical

dimension: there is little physical interest in discussing the case where
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both the quantum and classical transition are above their respective

upper-critical dimensions.

The basic results are already contained in the expression (8.6) for the

position of the T = 0 critical point, the de�nition (8.7), and the values

(8.24) and (8.25) for the e�ective coupling R. It will always be su�cient

to just use the �rst order result U = u for the non-linear coupling. It

is not necessary to renormalize the values of any coupling, and we can

simply express the results in terms of bare parameters. The expressions

also have a dependence upon the non-universal upper-cuto� �, and the

main subtlety in the evaluation of the results is the separation of this

non-universality from the T dependence which we shall �nd is universal.

Further this separation of � dependence must be done in a manner which

maintains analyticity in s at s = 0 for T > 0.

The �rst step is the evaluation of the frequency summation in the

expressions noted above for R: this leads to form for R closely related

to expressions (8.27,8.28) for d < 3

R = s+ u

�

N + 2

6

��

Z

d

d

k

(2�)

d

�

1

p

k

2

+ s

1

e

p

k

2

+s=T

� 1

�

T

k

2

+ s

+

T

k

2

�

+

Z

�

d

D

K

(2�)

D

�

1

K

2

+ s

�

1

K

2

�

#

: (8.38)

We observe that the cut-o� dependence is isolated entirely in the second

integrand which is a property of the T = 0 theory: this is why the

T dependence, which depends only upon the low energy excitations is

universal. We can remove this ultraviolet divergence by adding and

subtracting s=K

4

to the second-integrand: notice that this correction

term is smooth in s so that the analyticity properties of the expression

for R in terms of s will not be spoiled. The correction term leads to

a cut-o� dependent term which is also linear in s, and the remaining

integral is convergent at high momenta: in this way we get our �nal

result

R = s

�

1� c

1

u�

d�3

�

+ uT

d�1

�

N + 2

6

�

e

G

d

�

s

T

2

�

; (8.39)

where c

1

is the same non-universal constant which appeared in (8.9),

and the universal function

e

G

d

(y) is given by

e

G

d

(y) = S

d

Z

1

0

k

d�1

dk

 

1

p
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+ y

1
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+

1

2

p

k

2

+ y

�

1

2k

+

y

4k

3

!

: (8.40)

Despite appearances, this function is analytic as a function of y at y = 0:

this can be established by studying the small k behavior of the integrand,

and using the fact that the function 1=(e

x

� 1) � 1=x + 1=2 has an

expansion about x = 0 which involves only positive, odd powers of x.

Consequently, (8.40) can also be analytically continued to y < 0, but we

will not present the details of this.

With the result for R available in (8.39), and the value U = u, we

obtain the static susceptibility by simply evaluating (8.26), and thence

obtain the nonzero T crossovers near the quantum critical point T = 0,

s = 0. The structure of the results is very similar to those obtained in

Section 8.2.1, and so we will only state the main conclusions. Provided

there is no long-range order the static susceptibility takes the form

�

�1

(k) = k

2

+ �

�2

(8.41)

where � is the correlation length. For s > 0, and T �

p

s we have

�

�2

= s

�

1� c

1

u�

d�3

�

+ u

�

N + 2

6

��

T

2�

�

d=2

s

(d�2)=4

e

�

p

s=T

; (8.42)

so the T -dependent correction to the correlation length is exponentially

small, as expected for a system with an energy gap. At higher temper-

atures, T �

p

jsj, we have the limiting behavior

�

�2

= s

�

1� c

1

u�

d�3

�

+ uT

d�1

�

N + 2

6

�

S

d

�(d� 1)�(d� 1) (8.43)

where �(x) is the Reimann zeta function; so for s > 0 and

p

s � T �

(s=u)

1=(d�1)

the �rst T = 0 term in (8.43) dominates, while for higher

T the second T -dependent term takes over. For s < 0, setting �

�2

= 0

gives the us the condition for the transition to the ordered phase, T

c

�

(jsj=u)

1=(d�1)

which is analogous to the result (8.37) for d < 3.

We draw the reader's attention to an important property of the above

results. Note that in the high T limit T �

p

jsj, the correlation length

does not obey the relation � � T

�1=z

that might be expected from

general scaling arguments; instead we have have the result of (8.43)

where � � T

�(d�1)=2

, which agrees with the naive scaling estimate only

in the upper-critical dimension d = 3. The violations of scaling are

a consequence of the prefactor of the irrelevant coupling u in the T -

dependent term in (8.43). In the strict scaling limit, we should set this
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irrelevant coupling to zero, but then we would have a T -independent

correlation length. So, unlike the case for d < 3, irrelevant couplings

have to included to obtain the leading T dependence. Such couplings

which cannot be neglected even though they are formally irrelevant, are

called dangerously irrelevant. It should also be evident (we will brie
y

discuss this issue further in the following section) that such violations of

scaling also appear in the characteristic time for dynamic 
uctuations in

the high T regime: they are no longer simply universal numbers times

�h=k

B

T , but are proportional to higher powers of 1=T times a prefactor

involving the non-universal bare value of the coupling u.

8.3 Order parameter dynamics in d = 2

We will begin by formulating an e�ective theory for the low-energy,

long-wavelength 
uctuations of the order parameter �

�

. This model

will then be used to compute the behavior of Im�(k; !) at small k and

!. An important limitation of the resulting model is that it cannot

be used to compute universal transport properties (i.e. correlators of

L, the uniform susceptibility �

u

, and the spin di�usion constant D

s

).

These turn out to be dominated by larger k and !, as the small k and

! 
uctuations of �

�

, while having a large amplitude, carry very little

angular momentum current. A separate model for transport properties

will be developed in Chapter 9.

We will mostly limit our attention here to dynamics in the continuum

high T (`quantum critical') region of Figs 8.3 (which applies to N = 1; 2

in d = 2) and 7.1 (which applies to N � 3 in d = 2), but consider all

values of N . Dynamical properties in this region were studied by large

N expansion in Section 7.2, and led to Fig 7.3 for Im�(k; !) (which is the

analog of Fig 4.9 for the Ising chain). The large N expansion was found

to be adequate near the position of the quasi-particle pole (! � ck), but

failed badly for ! � T , ck � T . It is this failure we will rectify here;

our aim is to obtain the analog of the Ising chain results for Im�(k; !)=!

in Figs 4.10-4.12 for dimension d = 2. As we will see, there are some

signi�cant, qualitative physical di�erences between d = 1 and d = 2.

The basis of our approach depends upon the values of the coupling

constants for the e�ective theory S

�;e�

in (8.23) for the static �

�


uc-

tuations obtained in the �-expansion. In particular, this theory is char-

acterized by a renormalized \mass", R (de�ned in (8.25)), which in the
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high T region is (from (8.27) and (8.36))

R = �

�

N + 2

N + 8

�

2�

2

T

2

3

: (8.44)

The characteristic wavevector and energy of the dominant �

�


uctua-

tions both equal

p

R (in units with c = 1 which we are using in this

chapter). Observe that from small �,

p

R � T , and so the occupation

number of �

�

modes with this energy is large

1

e

p

R=T

� 1

�

T

p

R

�

1

p

�

� 1; (8.45)

The second term above is the classical equipartition value, and suggests

that predominant 
uctuations are classical waves in the magnitude and

orientation of �

�

.

How can we extend the model (8.23) to describe the dynamics of these

classical waves ? (The reasoning is almost identical to that presented in

Section 6.3.3 for the high T regime of the d = 1 rotor model; readers who

have skipped Chapter 6 may wish to read Section 6.3.3 until Eqn (6.55),

but this is not essential.) The predominance of 
uctuations with energy

smaller than T implies that the classical 
uctuation dissipation theorem

(4.92) applies, and (4.93) allows us to obtain the equal-time correlations

of �

�

from the static susceptibility of (8.23). For unequal time correla-

tions, we need to account for the kinetic energy of the �

�


uctuations.

To this end, we introduce a canonically conjugate momentum, �

�

, so

that we have the following standard Poisson bracket relations between

the �

�

, �

�

:

f�

�

(x); �

�

(x

0

)g

PB

= �

��

�(x� x

0

)

f�

�

(x); �

�

(x

0

)g

PB

= 0

f�

�

(x); �

�

(x

0

)g

PB

= 0: (8.46)

The Hamiltonian implied by (8.23) contains only `potential energy' terms,

and it has to be extended to include the kinetic energy. At the low or-

der in � we are working here, there are no renormalizations of the gra-

dient terms in (8.2), and so the kinetic energy is simply the standard

R

d

d

x�

2

�

=2 implied by the Hamiltonian form of the quantum Lagrangean

in (8.2); in this respect, the present situation is simpler than that in Sec-

tion 6.3.3, where a careful computation of the temperature dependence

of the uniform susceptibility was necessary to obtain the proper kinetic

energy term. In this manner we are led to the following classical phase
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space integral (as in \

R

dqdp") to generalize the con�guration space in-

tegral in (8.23):

Z =

Z

D�

�

(x)D�

�

(x) exp

�

�

H

c

T

�

H

c

=

Z

d

d

x

�

1

2

h

�

2

�

+ (r

x

�

�

)

2

+

e

R�

2

�

i

+

U

4!

(�

2

�

(x))

2

�

:(8.47)

Observe that we can freely integrate out the �

�

in a Gaussian integral,

and the functional integral over the �

�

and its equal-time correlations

then reduce to those implied by (8.23), as they should. This argument

shows that the couplings

e

R and U above are precisely those computed

in Section 8.2 in the �-expansion.

For unequal time correlations, we compute the Hamilton-Jacobi equa-

tions implied by (8.47) and the Poisson brackets (8.46):

@�

�

@t

= f�

�

;H

c

g

PB

= �

�

@�

�

@t

= f�

�

;H

c

g

PB

= r

2

x

�

�

�

e

R�

�

�

U

6

(�

2

�

)�

�

: (8.48)

Determination of the dynamic correlations now reduces to a problem of

the form also discussed in Section 6.3.3. Pick a set of initial conditions

for �

�

, �

�

from the ensemble implied by (8.47). Then evolve forward in

time, according to the deterministic equations (8.48). Finally, compute

unequal time correlations by averaging products of �elds at di�erent

times over the set of initial conditions in (8.47).

The scaling structure of the continuum dynamical problem de�ned

above has been discussed carefully in a recent paper [431], but the cen-

tral result is simple and quite easy to understand. First, let us discuss

the equal-time correlations computed in Section 8.2 in a slightly dif-

ferent language. The continuum statistical mechanics problem de�ned

by the functional integral in (8.23) requires some consideration of the

dependence of correlators on short-distance cuto�, �

�1

. For d < 3,

the answer is very simple: introduce a new renormalized `mass' R as

in (8.25), and then send the ultraviolet cuto�, �, to in�nity|a �nite,

universal, continuum answer will be obtained, which is, of course, that

speci�ed in the tricritical crossover function in (8.26). Notice that the

integral in (8.25) is divergent in the ultraviolet for d close to 3: what

we are saying is that this is the only short distance singularity in the
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problem for � = 3 � d > 0 and small, and this can be removed by a

simple, linear shift in the value of the mass R. After such a shift, the

continuum limit is well de�ned, and we can then deduce the form of all

correlators by a simple, engineering analysis of dimensions. The claim of

Ref [431] (which we accept here without proof) is that this same shift is

also su�cient for unequal time correlations; readers who read Chapter 6

will recall that a very similar claim was made in Section 6.3.3.

Let us, then, perform the straightforward engineering analysis of di-

mensions. We transform to dimensionless spatial, time, and �eld vari-

ables by the substitutions

x = xR

1=2

t = tR

1=2

�

�

= R

(2�d)=4

T

�1=2

�

�

�

�

= R

�d=4

T

�1=2

�

�

(8.49)

in (8.47) and (8.48). All dimensional couplings in (8.47) and (8.48)

disappear, and they acquire a universal form dependent only on a single

dimensionless parameter multiplying the quartic (cubic) term in (8.47)

((8.48)), which is

G �

TU

R

(4�d)=2

: (8.50)

This is, of course, precisely the dimensionless parameter which appeared

in crossover functions like (8.26): we now have given it a separate sym-

bol which represents its role as a `Ginzburg parameter' [318], controlling

the strength of thermal 
uctuations. The scaling form (8.26) can now

be immediately deduced from the mappings (8.49), but the present ap-

proach also allows us to write down the form of the dynamic structure

factor in a manner similar to that used in (4.95), (6.62) and (7.36):

2T

!

Im�(k; !) = S(k; !) =

T�(k)

p

R

�

Sc

�

k

R

1=2

;

!

R

1=2

;G

�

: (8.51)

The �rst relation is the classical 
uctuation-dissipation theorem (4.92),

and �

Sc

is a universal scaling function. The prefactor of the static

susceptibility, �(k), satis�es (8.26), and was already computed in Sec-

tion 8.2.1; it has been inserted so that the Kramers-Kronig relation

(4.10) implies that �

Sc

has a �xed integral over frequency,

Z

d!

2�

�

Sc

(k; !;G) = 1; (8.52)

as in Fig 4.12 and (4.96).
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Our task is now clear. Solve the continuum equations of motion (8.48)

for initial conditions speci�ed by (8.47), and so determine the scaling

function �

Sc

. For the high T region, this solution should be obtained at

the value of G determined in Section 8.2.1, which is

G =

48�

p

3

p

2(n+ 2)(n+ 8)

p

�; (8.53)

and is small for small �. In general, as implied by the discussion in Sec-

tion 8.2.1, G is a smooth, dimensionless function of s

R

=T

1=z�

(and can

be rewritten as a universal function of �

+

=T on the quantum paramag-

netic side, and similarly for the magnetically ordered side); it decreases

(increases) from the high T value in (8.53) as we decrease T towards the

quantum paramagnetic (magnetically ordered) region. For G = 0, the

dynamic problem is one of linear waves, and can be easily solved. For

small G, equal-time correlations can be obtained in perturbation theory,

and this was already discussed in Section 8.2.1. However, as we have

already noted, perturbation theory fails for dynamic properties in the

low frequency limit [427] for any non-zero G.

So the only remaining possibility is to numerically solve the strong-

coupling dynamical problem speci�ed by (8.47) and (8.48). Formally, we

are carrying out an � expansion, and so the numerical solution should

be obtained for d just below 3. However, it is naturally much simpler to

simulate directly in d = 2, which is also the dimensionality of physical

interest. So the approach to the solution of the dynamic problem in

the quantum critical region breaks down into two systematic steps: (i)

Use the � = 3 � d expansion to derive an e�ective classical non-linear

wave problem characterized by the couplings R and G. (ii) Obtain the

exact numerical solution of the classical non-linear wave problem at these

values of R and G directly in d = 2. This fracture of the problem into

two rather disjointed steps is also physically reasonable: it is primarily

the classical thermal 
uctuations for which the dimensionality d = 2

plays a special role and the cases N = 1; 2 and N � 3 are strongly

distinguished, and so it is important to treat these exactly; on the other

hand, the � = 3 � d expansion provides a reasonable treatment of the

quantum 
uctuations down to d = 2 for all N .

Before embarking on a description of this numerical solution, let us

make some peripheral remarks. First, the relationship (8.25) between

e

R and R cannot be used in d = 2 because there is now an infrared
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divergence in the momentum integral. Instead we replace (8.25) by

e

R = R� U

�

N + 2

6

�

Z

d

d

k

(2�)

d

T

k

2

+R

; (8.54)

which is a non-linear relationship between

e

R and

e

R. The change in the

propagator makes no di�erence at large momenta, and so the cancella-

tion of ultraviolet divergences goes through as before [309]. The value of

R as computed in the � expansion is now di�erent, but the leading order

result (8.44) remains unchanged. The new relationship (8.54) does have

some important consequences for the structure of the static properties

at large G, but we will not go into this here. In particular, the present

approach can be used to reliably obtain physically important crossovers

in d = 2 (like that in the static susceptibility �(k; ! = 0), and the su-

per
uid density �

s

for N = 2) between the high T and low T regions of

Fig 8.3; this is discussed elsewhere [431] in some detail.

Figs 8.4 and 8.5 contain the results of a recent numerical computation

of the scaling functions in (8.51) at k = 0, i.e. for S(0; !). These

results are the analog of Fig 4.12 for the Ising chain (and Fig 6.4 for the

d = 1, N = 3 rotor model, for those who have read Chapter 6). As (8.53)

evaluates to a moderately large value of G in d = 2, the perturbation

theory results of Section 8.2.1 for �(k) are no longer accurate, and we

also numerically computed the exact values of 	

d

(0;G) in d = 2 (see

(8.26)), and these are reported in the captions to the �gures. The results

show a consistent trend from small values of G and large values of N

to large values of G and small values of N , and we discuss the physical

interpretation of the two limiting cases in turn.

For smaller G and largerN , we observe a peak in S(0; !) at a non-zero

frequency. This peak is the remnant of the delta function in the large

N result (5.22), where the value of m was given by (5.64,5.72,5.75) (the

same peak also appears in the 1=N computation in Fig 7.3 in Chapter 7).

In the present computation, it is clear that the peak is due to ampli-

tude 
uctuations as �

�

oscillates about the minimum in its e�ective

potential at �

�

= 0. In addition to the peak at �nite frequency, there

is weight in S(0; !) down to zero frequency, with S(0; !) > 0, and so

Im�(0; !) � ! for small !; direct analytic computations of Im�(0; !) in

either the � or 1=N expansions give di�erent, unphysical, low frequency

limits for Im�(0; !) (as was seen in Section 7.2.2), and so the present

exact dynamical computation directly in d = 2 with N �nite has cured

this sickness. Readers of Chapter 6 will also recognize the similarity of
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0

3

6

9

0 0.4 0.8 1.2 1.6ω

ΦSc N=2

Fig. 8.4. Numerical results from Ref [431] for the zero momentum scaling

function �

Sc

(0; !;G) appearing in (8.51) for N = 2. Results are shown for

G = 20 (short dashes), G = 30 (long dashes) and G = 40 (full line). The static

susceptibility takes the values (see (8.26)) R�(k) = 	

�1

2

(0;G) = 1:67, 2:65,

and 4:73 at G = 20, 30, and 40 respectively. The high T limit value of G in

(8.53) evaluates to G = 29:2 at � = 1 and N = 2.

this �nite frequency peak with the shoulder in Fig 6.4 describing the

high T limit of the d = 1, N = 3 case.

For larger G and smaller N , the peak in S(0; !) shifts down to ! = 0.

The resulting spectrum is then closer to the exact solution for d = 1,N =

1 presented in Fig 4.12. As G increases further, the zero frequency peak

becomes narrower and taller; it has been argued in Ref [431] that this

behavior is characteristic of 
uctuations of �

�

about a minimum in the

e�ective potential which is at a non-zero value of j�

�

j i.e. for N � 2, the

predominant 
uctuations are angular. Indeed, it has been shown [431]

that for N = 3 and G ! 1 the scaling function in (8.51) becomes

precisely that in (7.36), which describes the dynamics of a model with

�xed j�

�

j.

It is interesting to examine the above results at the value of high T

limit for G in (8.53) evaluated directly in � = 1. We �nd G = 29:2, 24:9

for N = 2, 3, and these values are very close to the position where the

crossover between the above behaviors occurs. The N = 2 case is closer
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0

3

6

0 0.4 0.8 1.2 1.6

ΦSc

ω

N=3

Fig. 8.5. As in Fig 8.4 but for N = 3. The values of G are now G = 20

(short dashes), G = 25 (long dashes) and G = 30 (full line). The static

susceptibility takes the values (see (8.26)) R�(k) = 	

�1

2

(0;G) = 1:73, 2:17,

and 2:75 at G = 20, 25, and 30 respectively. The high T limit value of G in

(8.53) evaluates to G = 24:9 at � = 1 and N = 3.

to having a maximum in S(0; !) at ! = 0, while there is a more clearly

de�ned �nite frequency peak for N = 3.

A �nal parenthetic remark. Readers may recognize a resemblance be-

tween the above crossover in dynamical properties as a function of G,

and a well-studied phenomenon in dissipative quantum mechanics [302,

525, 303]: the crossover from `coherent oscillation' to `incoherent relax-

ation' in a two-level system coupled to a heat bath . However, here we

do not rely on an arbitrary heat bath of linear oscillators, and the relax-

ational dynamics emerges on its own from the underlying Hamiltonian

dynamics of an interacting many-body, quantum system.

8.4 Applications and extensions

Bitko et al. [55] have studied the vicinity of the quantum phase tran-

sition in the Ising spin system LiHoF

4

in the presence of a transverse

magnetic �eld. This Ising spins have long-range dipolar exchange, and

this puts the quantum critical point above its upper critical dimension

because long-range forces tend to make the mean-�eld approximation
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better. The resulting exponents are therefore mean-�eld like, and physi-

cal properties can be computed in a manner very similar to Section 8.2.2.

We have argued in Section 8.2.1 that for systems below the upper

critical dimension with a �nite temperature phase transition (the cases

N = 1; 2, d = 2), the critical temperature of the transition is universally

related to the ground state energy scale �

�

. For the case d = 2, N = 2,

we may choose �

�

= �

s

, the ground state spin sti�ness, and so T

c

=�

s

is a universal constant. Indeed the universality applies to the entire

temperature dependence of �

s

, and so

�

s

(T ) = �

s

�

�

�

T

�

s

�

; (8.55)

where �

s

� �

s

(0), and �

�

is a universal function which can be computed

by the methods of Section 8.2.1 in a � expansion. The value of T

c

is

determined by the argument at which �

�

�rst vanishes. In d = 2,

the function �

�

will display a discontinuity at T = T

c

to allow for the

Nelson-Kosterlitz jump [361] in the super
uid density. For experimental

comparisons, it is easy to see that (8.55) implies the slightly weaker

result

�

s

(T )

�

s

(0)

=

e

�

�

�

T

T

c

�

; (8.56)

with the function

e

�

�

computable from �

�

. The numerically exact com-

putations in d = 2 discussed in Section 8.3 have been used to obtain

explicit computations of the functions �

�

,

e

�

�

for the model (8.2), and

these results contain the jump in the super
uid density. It is quite in-

triguing that the data [213, 138] on the high temperature superconduc-

tors satis�es the relation (8.56), suggesting the proximity of a quantum

critical point at which the super
uid density vanishes at T = 0.

This last point of view can be further extended by the dynamical re-

sults obtained in Section 8.3. There we saw that the high T limit of

the N = 2 case had a peak in S(0; !) at ! = 0, suggesting domination

by 
uctuations in the phase of the order parameter. We can describe

the photo-emission spectrum in such a situation by assuming that the

superconducting quasiparticles follow the instantaneous �

�

con�gura-

tion [165, 285], and then a ! = 0 peak in S(0; !) is expected to translate

into a `pseudo-gap' in the fermion spectrum.

As we have noted in Sections 4.6 and 7.4, the neutron scattering mea-

surements of Aeppli et al. [2] on La

2�x

Sr

x

CuO

4

at x = 0:15 are consis-

tent with high T limit of scaling forms like (5.60) and (8.51) with z = 1,
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suggesting proximity to a state with incommensurate spin and charge

ordering. The N = 3 results of Section 8.3 provide explicit dynamical

response functions with which experimental results can be compared;

the qualitative features of Fig 8.5 are quite similar to those of the ex-

periments, and more precise comparisons should be made in the future.

Notice that, in this case, it is the smaller values of G (which have a �-

nite frequency peak in Fig 8.5) which lead to a `pseudo-gap' in the spin

excitation spectrum.

Recent light scattering experiments have explored magnetic transi-

tions in double layer quantum Hall systems [377, 378]. As we will discuss

in Sections 13.4 and 13.5, the dynamical properties of these systems can

be described by models closely related to those studied in Section 8.3.

The light scattering spectrum can therefore lead to tests of the dynamic

structure factors like those in Fig 8.4 and 8.5.

We have not explicitly considered the case of the upper-critical di-

mension d = 3 in our discussion in this chapter. In this case there are

logarithmic corrections, involving a non-universal upper cuto� scale in

the argument of the logarithm, which can be computed using renor-

malization group arguments similar to those considered in Sections 6.3

and 7.1.1. We assume the system begins with a positive coupling u of

order unity at a microscopic scale �. Then, as in Sections 6.3 and 7.1.1,

it pays to use the renormalization group invariance to renormalize to a

scale � = T=c; from the 
ow equation (8.17) we see that for � = 0 and

T � �

u

R

=

�

6

N + 8

�

1

ln(c�=T )

: (8.57)

So the non-linearity u is logarithmically small. The !

n

6= 0 modes can

be integrated out by precisely the methods of Section 8.2 to derive an

e�ective action for the !

n

= 0 modes. This step should be carried out at

the scale � = T=c, as this ensures that u

R

is small, and also that there are

no large logarithms generated in the perturbation theory in u

R

(the only

scale running through the Feynman diagrams is T , and so dimensionally

all logarithms must be order ln(c�=T ), which is small). The subsequent

analysis of the action for the !

n

= 0 modes then proceeds as before.

To lowest order, the physical results can be obtained from the d < 3

computation by the replacement �! 1=(ln(c�=T )).

Irkhin and Katanin [241] have applied the methods of this chapter to

crossovers in anisotropic magnetic systems, along with comparisons to

experimental and numerical data.
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We mentioned the proposal of Normand and Rice [366, 367] for the

proximity of a d = 3, N = 3 quantum critical point in LaCuO

2:5

in

Section 5.5. The ground state of this system has N�eel order, and these

authors argued that there should be a low-lying amplitude 
uctuation

mode in the spectrum of the ordered phase, in addition to the usual spin-

wave modes. The universal properties of such a mode can be obtained

directly from the approach developed in this chapter|we examine (8.2)

for r < 0 in an expansion in the non-linear coupling u, which will be

logarithmically small in d = 3 as in (8.57). The longitudinal 
uctuations

in j�

�

j about a non-zero mean value will lead to a mode whose energy

vanishes as jrj ! 0.
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Transport in d = 2

We considered time-dependent correlations of the conserved angular mo-

mentum, L(x; t), of the O(3) quantum rotor model in d = 1 in Chapter 6.

We found, using e�ective semiclassical models, that the dynamic 
uctua-

tions of L(x; t) were characterized by a di�usive form (see (6.26)) at long

times and distances, and were able to obtain values for the spin di�u-

sion constant D

s

at low T and high T (see Fig 6.5). The purpose of this

chapter is to study the analogous correlations in d = 2 for N � 2; the

case N = 1 has no conserved angular-momentum, and so no possibility

of di�usive spin correlations. Rather than thinking about 
uctuations of

the conserved angular momentum in equilibrium, we shall �nd it more

convenient here to consider instead the response to an external space

and time dependent `magnetic' �eld H(x; t), and to examine how the

system transports the conserved angular momentum under its in
uence.

In principle, it is possible to address these issues in the high T region

using the non-linear classical wave problem developed in Section 8.3 in

the context of the � = 3 � d expansion. However, an attempt to do

this quickly shows that the correlators of L contain ultraviolet diver-

gences when evaluated in the e�ective classical theory. Physically, this

is a signal that transport properties are not dominated by excitations

with energy � T (while the order parameter 
uctuations, considered

in Section 8.3, were), and it is necessary to include 
uctuations with

higher energy, which must then be treated quantum mechanically. It is

this quantum transport problem we will address here. We will show that

it is necessary to solve a quantum transport equation for the quantized

particle excitations to describe di�usion in the high T and the low T

quantum paramagnetic regions.

It is useful to begin by introducing some basic formalism. We shall

mostly be using the `soft-spin' approach to the quantum critical point

224
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discussed in Chapter 8, and so it is useful to setup the machinery of

transport theory using its notation. For general N , the `magnetic' �eld

H has N(N � 1)=2 components (as in (1.18)): this �eld generates rota-

tions of the �

�

order parameter, and the number of components equals

the number of ways of choosing independent planes of rotation in the

N -dimensional order parameter space. Only for the case N = 3 con-

sidered earlier, do the order parameter and `magnetic' �eld have the

same number of components. We will denote this generalized �eld by

H

a

, with a = 1 : : :N(N � 1)=2. Notice that for N = 2, a has only one

allowed value and is therefore redundant: we will later apply the N = 2

model to the super
uid-insulator transition, and will see there that H

a

represents the electrostatic potential. In (5.16), we have already seen the

form of the imaginary time e�ective action for the N = 3 rotor model

in the presence of a non-zero H

a

in the �xed-length n �eld formulation.

By the precise analog of the arguments made in Section 5.2 in deriving

(5.16), we may conclude that the generalization of the soft-spin theory

(8.2) in the presence of an external �eld H

a

is:

Z =

Z

D�

�

(x; �) exp(�S

�

)

S

�

=

Z

d

d

x

Z

1=T

0

d�

�

1

2

�

(@

�

�

�

� iH

a

T

a

��

�

�

)

2

+ c

2

(r

x

�

�

)

2

+r�

2

�

(x)

�

+

u

4!

(�

2

�

(x))

2

o

: (9.1)

Notice that H

a

merely causes a precession of the �

�

�eld: the T

a

are

N � N real antisymmetric matrices which generate the O(N) rotation

(they are i times the generators of the Lie algebra of O(N)). There are

N(N�1)=2 such linearly independent matrices: it is convenient to choose

the basis in which all but 2 matrix elements of a given T

a

are zero, with

the non-vanishing elements equaling �1. In this functional language, the

observable corresponding to the conserved angular-momentum density

is given by

L

a

(x; t) = �

�S

�

�H

a

(x; t)

: (9.2)

Note that these are N(N � 1)=2 components of this density, and their

spatial integrals are all constants of the motion.

Many of the physical arguments will actually be clearer in a Hamil-

tonian formalism. For the �xed-length model (5.16), we had the lattice

Hamiltonian in (5.1). We can apply the inverse of the transformation

used in going from (5.1) to (5.16) to obtain the Hamiltonian form of
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(9.1): we interpret �

a

as the co-ordinate of a `particle' with unit mass

moving in N dimensions ( no longer constrained to move on a sphere), as

discussed in Chapter 2, and we obtain the following continuum Hamil-

tonian

H =

Z

d

d

x

�

1

2

�

�

2

�

+ c

2

(r

x

�

�

)

2

+ r�

2

�

(x)

�

+

u

4!

(�

2

�

(x))

2

�H

a

(x; t)T

a

��

�

�

�

�

�

: (9.3)

Here �

�

(x; t) is the canonically momentum to the �eld �

�

, which there-

fore satisfy the equal-time commutation relations

[�

�

(x; t); �

�

(x

0

; t)] = i�

��

�(x� x

0

): (9.4)

The Eqns (9.3) and (9.4) are, of course, the quantized Hamiltonian ver-

sions of the classical Hamiltonian problem de�ned by (8.46) and (8.47).

The operator representation of the angular momentum density is ob-

tained by the analog of (9.2), and therefore

L

a

(x; t) = T

a

��

�

�

(x; t)�

�

(x; t): (9.5)

It can be veri�ed that the �elds L

a

, �

�

satisfy commutation relations

which are the continuum limit of the relations (1.19) for the �xed-length

rotor model.

The basic purpose of this chapter shall be an analysis of the time

evolution of the expectation value of L

a

(x; t) in situations close to ther-

mal equilibrium. Let us �rst examine the exact Heisenberg equation

of motion of the operator in (9.5) under the Hamiltonian in (9.3); an

elementary computation using the commutation relation (9.4) gives a

result which can be written in the form

@L

a

@t

= �

~

r �

~

J

a

+ f

abc

H

b

L

c

; (9.6)

where f

abc

are the structure constants of the Lie algebra of O(N) de�ned

by the commutation relations

[T

a

; T

b

] = f

abc

T

c

: (9.7)

These structure constants are totally antisymmetric in a; b; c; for N = 3,

f

abc

= �

abc

, while for N = 2, f

abc

= 0. The term proportional to f

abc

in

(9.6) represents the Bloch precession of the angular momentum about

the external �eld. The quantity

~

J

a

in (9.6) is the angular momentum

current. An expression for

~

J

a

can be easily obtained by generating the

equation of motion as noted above; however, as the equations of motion
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involve only the divergence of

~

J

a

, this expression will be uncertain up

to the curl of arbitrary vector. It is customary to choose this arbitrary

vector to obtain the transport current

~

J

a

tr

so that the expectation value

h

~

J

a

tr

i vanishes in thermal equilibrium. In this case a non-zero h

~

J

a

tr

i will

describe bulk transport of the angular momentum density hL

a

i across

macroscopic distances when the system is driven out of equilibrium by

an external perturbation.

Let us introduce some phenomenological considerations for a system

close to thermal equilibrium. We imagine that due to weak perturbations

from unspeci�ed sources, we deform a thermal equilibrium state into

one characterized by a non-zero, space dependent angular momentum

density hL

a

i. Further, there is also present a slowly varying `magnetic'

�eld H

a

(x; t). Both these perturbations will tend to induce a non-zero

transport current h

~

J

a

tr

i, and provided the perturbations are weak and

very slowly varying, we can write down the following phenomenological

expression for the current:

h

~

J

a

tr

(x; t)i = �

~

rH

a

(x; t)�D

s

~

rhL

a

(x; t)i: (9.8)

We have introduced two transport coe�cients in the above equation.

The �rst, �, is the conductivity: a uniform H

a

is expected to induce

only a non-zero magnetization density, and so any induced current can

only be due to gradients of H

a

. The second, D

s

, is the spin di�usion

constant we met in the discussion of the 
uctuations of L

a

(x; t) in d = 1

in Chapter 6: the combination of (9.6) and (9.8) shows that for the

external �eld H

a

= 0, hL

a

(x; t)i satis�es the di�usion equation

@hL

a

(x; t)i

@t

= D

s

r

2

hL

a

(x; t)i; (9.9)

and identi�es D

s

as the di�usion constant.

Continuing our phenomenological analysis, we discuss the important

Einstein relation between � and D

s

. Imagine we are considering a closed

system in which H

a

is time-independent, but a slow function of x. Even-

tually the system will reach thermal equilibrium in which the local an-

gular momentum density is simply given by the equilibrium response to

a uniform �eld

hL

a

i = �

u

H

a

(x); (9.10)

where �

u

was de�ned in (5.3) (we have arranged the initial conditions

so that this result is compatible with conservation of the total angular

momentum). Under this condition of equilibrium the transport current
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should also vanish: this is compatible with the de�ning transport rela-

tion (9.8) only if

� = �

u

D

s

(9.11)

This is the basic Einstein relation between the di�usion coe�cient char-

acterizing 
uctuations, and the conductivity representing the response

of the system to an external �eld.

Using (9.11), we can obtain the basic scaling properties of the conduc-

tivity �. Recall from (5.43) that the scaling dimension of �

u

is d�z (we

will henceforth use the value z = 1 for the rotor models in the remainder

of this chapter), and �

u

satis�es the scaling forms (5.63):

�

u

=

T

d�1

c

d

�

u�

�

�

�

T

�

(9.12)

on the two sides of the quantum critical point (recall that �

�

are energy

scales measuring the deviation of the ground state from the T = 0

quantum critical point). In d = 2, the N = 1 result for the scaling

functions �

u�

can be obtained by inserting (5.64), (5.72) and (5.75)

into (5.65). We will note here some asymptotic limits, also mentioned

in Fig 7.4: on the ordered side, where �

�

= �

s

, the ground state spin

sti�ness, we have the exact result for T � �

s

obtained in (7.25) which

shows that �

u

reaches a non-zero value as T ! 0:

�

u

=

2�

s

Nc

2

"

1 +

(N � 2)T

2��

s

+O

�

T

�

s

�

2

#

; (9.13)

on the quantum paramagnetic side, we expect an exponentially small

uniform susceptibility for T � �

+

, and we can again obtain an exact

result in d = 2 by the same dilute gas of quasiparticles argument which

led to (6.12):

�

u

=

�

+

�c

2

e

��

+

=T

; (9.14)

�nally, in the high T limit, T � �

�

, we must rely on the large N

expansion to obtain the value of the constant �

u�

(0), and the N = 1

result is

�

u

=

T

c

2

p

5

�

ln

 

p

5 + 1

2

!

: (9.15)

Turning to the di�usion constant, no explicit scaling results have yet

been obtained (indeed, that is the primary purpose of this chapter), but

we can deduce its scaling dimension by a simple argument. A glance
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at (9.9) shows that D

s

has the dimensions of (length)

2

=time. There is

no �eld scale that appears in the de�nition of D

s

, and as the scaling

dimension has to respect the conservation law for L

a

, we the scaling

dimensions

dim[D

s

] = z � 2

dim[�] = d� 2; (9.16)

where the second relation follows from (5.43). Using dim[T ] = z, and

matching engineering dimensions with those of c and T , we then see

that D

s

must equal c

2

=T times a universal function of �

�

=T . Combin-

ing this with (9.11) and (9.12) we have the main scaling form for the

conductivity [159, 157, 78, 527, 422, 116]

�(!) =

Q

2

�h

�

k

B

T

�hc

�

d�2

�

��

�

�h!

k

B

T

;

�

�

k

B

T

�

; (9.17)

where �

��

are completely universal scaling functions. We have momen-

tarily returned to physical units by re-inserting factors of �h, k

B

and and

the charge of the carriers, Q (this had been absorbed into our de�nition

of H

a

; Q = 2e for the super
uid-insulator transition)|we will do this

occasionally below when quoting results for �. For future use, we have

generalized the conductivity to a dynamical frequency dependent con-

ductivity �(!) representing the response in the current at frequency !

to an external �eld at the same frequency (� � �(0)); the scaling depen-

dence on !=T then follows from now familiar arguments. We will focus

in this chapter mainly on the high T regime T � �

�

, and therefore

on the value of �

��

(!=T; 0). Also notice an important, and remarkable

property of (9.17): in spatial dimension d = 2, the prefactor of the power

T disappears, and the conductivity is entirely given by the scaling func-

tion �

��

times the fundamental constants Q

2

=�h. In the high T limit, we

are then left with the dimensionless scaling function �

��

(!=T; 0) which

depends on no system parameters at all.

We will work, throughout this chapter, in the high T and quantum

paramagnetic low T regions of Fig 8.3. We will not be studying the

crossover in the shaded classical region of Fig 8.3 near the �nite tem-

perature transition for N = 2: transport properties in this region are

of considerable practical interest, but the methods developed here are

not adequate to describe them. One consequence of restricting ourselves

out of the shaded region is that we are always in a regime where the

perturbative expansion for the tricritical crossover function in (8.12) is

adequate.
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9.1 Perturbation theory

We will begin our computation of � by a simple perturbative evaluation

of the leading order term in both the � = 3�d and 1=N expansions [116].

First, let us specify more carefully the con�guration of the system. We

begin, at some time in the remote past, with an in�nite d-dimensional

quantum rotor system in thermal equilibrium at a temperature T . A

small `magnetic �eld' with a uniform spatial gradient, and oscillating

with a frequency !, is turned on, also in the remote past. We are inter-

ested in the eventual steady state in which there is a spatially uniform

angular momentum current present, also oscillating with the frequency

!. The proportionality constant between the current and the �eld gra-

dient de�nes the conductivity �(!). As the current is spatially uniform,

the magnetization density is zero at all times (so the term proportional

to D

s

in (9.8) is not present).

It should be evident that this physical situation has a translational

symmetry. However, in considering the response to the �eld, we need

a uniform gradient, and therefore it appears necessary to consider a re-

sponse at a non-zero wavevector. This is slightly inconvenient, and so

we use an alternative method which should be familiar to most readers

in the context of discussion of the Kubo formula in many body sys-

tems [146]. The basic point is to note that H

a

appears in (9.1) in the

same form as the time component of an O(N) non-Abelian gauge �eld.

It is then useful to generalize (9.1) to also introduce a �ctitious spatial

component of this gauge �eld, denoted

~

A

a

, by changing only the gradient

terms in (9.1) to

1

2

h

(@

�

�

�

+ iH

a

T

a

��

�

�

)

2

+ c

2

(

~

r�

�

�

~

A

a

T

a

��

�

�

)

2

i

; (9.18)

One advantage of introducing

~

A

a

is that it can be checked that the

current J

a

appearing in (9.6) is given by the simple expression

~

J

a

= �

�S

�

�

~

A

a

; (9.19)

this result is the analog of (9.2). The action S

�

is seen to be invariant

under the non-Abelian gauge transformation

�

�

! �

�

+


a

T

a

��

�

�

~

A

a

!

~

A

a

+

~

r


a

H

a

! H

a

+ i@

�




a

(9.20)

where 


a

is an arbitrary in�nitesimal function of space and time. We
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can use this gauge invariance to transform away the �eld H

a

appearing

with the time-component and have only a non-zero

~

A

a

. From (9.20)

we see that for a system with a non-zero H

a

and

~

A

a

= 0, is equivalent

to a system with H

a

= 0 and

~

A

a

=

~

r


a

where @

�




a

= iH

a

. So if

we have uniform, time-dependent, spatial gradient in H

a

, we can de�ne

the space-independent

~

E

a

=

~

rH

a

and we see, in imaginary frequencies,

that

~

A

a

(!

n

) =

~

E

a

(!

n

)=!

n

in the gauge-transformed system.

The above mapping allows us to present a simple prescription to com-

pute �(!

n

). Work with a S

�

with H

a

= 0, and a non-zero space-

independent

~

A

a

(!

n

): notice that the external source

~

A

a

is explicitly at

zero momentum. Compute the expectation value of (9.19) under this

S

'

: then the conductivity is given by the linear response to a non-zero

~

A

a

by

�(!

n

) = �

1

!

n

�

�

~

A

a

�

�S

�

�

~

A

a

�

�

�

�

�

~

A

a

=0

(9.21)

It is a simple matter to use (9.21) to compute �(i!

n

), either to �rst

order in u, or in the N = 1 limit (in this case one simply uses the

self-consistent large N propagator in (5.22), and otherwise ignores in-

teractions). In both cases the answer can be written in the following

form:

�(!

n

) =

�

2c

2

T

!

n

X

�

n

Z

d

d

k

(2�)

d

�

2c

2

k

2

x

(�

2

n

+ c

2

k

2

+m

2

)((�

n

+ !

n

)

2

+ c

2

k

2

+m

2

)

�

1

�

2

n

+ c

2

k

2

+m

2

�

: (9.22)

The �rst term is the so-called `paramagnetic' contribution, while the

second is the `diamagnetic' term, and these arise from the diagrams

shown in Fig 9.1. Here we have taken the gradient of H

a

along the x

direction and k

x

is the x component of the d dimensional momentum k.

The \mass" m has been computed in earlier chapters: the � and large

N results di�er only in their T -dependent values for m. At N = 1 we

have the result in (7.44). The � expansion was considered in Chapter 8,

and for the high T and quantum paramagnetic low T regions of interest

here, we have from (8.26), (8.12) and (8.32) that

m

2

= R� �

�

N + 2

N + 8

�

2�T

p

R (9.23)
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Fig. 9.1. Feynman diagrams leading to the two terms in (9.22). The dark

circle represents the term linear in

~

A

a

in (9.18), while the dark square is the

term quadratic in

~

A

a

.

where R is given in (8.31); in the high T limit we have m

2

= �((N +

2)=(N + 8))2�

2

T

2

=3 to leading order in the � expansion.

Now insert 1 = @k

x

=@k

x

in front of the diamagnetic term in (9.22) and

integrate by parts. The surface terms vanish in dimensional or lattice

regularization, and the expression for the conductivity becomes

�(!

n

) = �

2c

2

!

n

T

X

�

n

Z

d

d

k

(2�)

d

2c

2

k

2

x

�

2

n

+ c

2

k

2

+m

2

�

�

1

(�

n

+ !

n

)

2

+ c

2

k

2

+m

2

�

1

�

2

n

+ c

2

k

2

+m

2

�

: (9.24)

We evaluate the summation over Matsubara frequencies, analytically

continue to real frequencies. The resulting �(!) is complex, and we

decompose it into its real and imaginary parts �(!) = �

0

(!) + i�

00

(!).

We will only present results for the real part �

0

(!), and the imaginary

part �

00

(!) can be obtained via the standard dispersion relation.

We �nd that the result for �

0

(!) has two distinct contributions [515,

116] of very di�erent physical origin. We separate these by writing

�

0

(!) = �

0

I

(!) + �

0

II

(!): (9.25)

The �rst part, �

0

I

(!), is a delta function at zero frequency:

�

0

I

(!) = 2�c

4

�(!)

Z

d

d

k

(2�)

d

k

2

x

"

2

k

�

�

@n("

k

)

@"

k

�

; (9.26)

where n(") is the Bose function in (7.63) and the excitations have the

energy momentum relation "

k

given in (7.64). We will discuss the phys-

ical meaning of the delta function in (9.26) below, and obtain a separate

and more physical derivation of its weight in Section 9.2. The second
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0

0.05

0.1

0 10
ω / Τ

Φ'σ+

Fig. 9.2. The real part, �

0

�+

, of the universal scaling function �

�+

in the high

T limit (T � �

�

) (see (9.17)) at the one loop level The numerical values are

obtained from (9.26) and (9.27) with d = 2 (� = 1). There is a delta function

precisely at !=T = 0 represented by the heavy arrow: the weight of this delta

function is given in (9.28) and (9.29). The delta function contributes to �

I

,

and the higher frequency continuum to �

II

part, �

0

II

(!) is a continuum above a threshold frequency of 2�:

�

0

II

(!) = �c

4

Z

d

d

k

(2�)

d

k

2

x

2"

3

k

(1 + 2n("

k

))�(j!j � 2"

k

)

=

�S

d

d

�(j!j � 2m)

�

!

2

� 4m

2

4!

2

�

d=2

[1 + 2n(!=2)]

�

�

�

!

c

�

�

�

d�2

:(9.27)

where S

d

was de�ned below (8.16). It can be veri�ed that the above

results for �(!) obey the scaling form (9.17).

We now discuss the physical and scaling properties of the two compo-

nents of the conductivity in turn; the results are also sketched in Fig 9.2.

9.1.1 �

I

This is a zero frequency delta function, and is present only for T > 0.

It is interpreted as the contribution of thermally excited particles which
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propagate ballistically without any collisions with other particles: this

will become evident when we rederive this delta function contribution

later in Section 9.2 using a transport equation formalism. Indeed, to

�rst order in � (Chapter 8), or at N =1 (Section 7.2), the excitations

are simply undamped particles with an in�nite lifetime and energy mo-

mentum relation "

k

. As we saw in Section 7.2.2, it is necessary to go

to �rst order in 1=N , to include collisions which will give the quasipar-

ticles a �nite lifetime, and lead to a �nite phase coherence time �

'

; a

similar analysis in the � expansion shows that such e�ects appear at

order �

2

. We will show in Section 9.3 that these collisions also broaden

the delta function in �

I

. The magnitude of the broadening is expected

to be determined by the inverse lifetime of the quasiparticles; in the

high temperature limit, this inverse lifetime is of order �

2

T [427] in the

� expansion, or of order T=N in the large N theory (see Eqn (7.68)).

The typical energy of a quasiparticle at the critical point is of order T ,

and so the quasiparticles are well-de�ned, at least within the � or 1=N

expansion. Notice, however, that the quasiparticle interpretation breaks

down at the physically important values of � = 1, N = 2; 3.

Let us evaluate the expression (9.26) for �

I

in its limiting regimes.

First, the high T region. Consider �rst the � expansion. The coe�cient

of the delta function is a function of the ratiom=T , but notice from (9.23)

and below that m � T for small �. Evaluating (9.26) in this limit we

�nd for � small

�

0

I

(!) = 2�c

2�d

T

d�1

�(!)

�

1

18

�

m

8�T

+ : : :

�

= 2�c

2�d

T

d�1

�(!)

"

1

18

�

p

�

8

�

2(N + 2)

3(N + 8)

�

1=2

+ : : :

#

(9.28)

Actually the expression (9.26) is good to order � but we have refrained

from displaying the next term as it is rather lengthy. The �rst term in

(9.28) is obtained by evaluating (9.26) at m = 0, d = 3; the second term

is from an integral dominated by small ck � m� T and hence the Bose

function can be replaced by its classical limit. It is important to note

that the current carried by the thermally excited carriers is dominated

by the leading term of (9.28), which arises from momenta k � T � m

(this is the reason we are not allowed to use the classical wave model

of Section 8.2.1 for transport properties). This will be useful to us in

the analysis of collisions in Section 9.3 where we will simply be able

to set m = 0 to obtain the leading term. In the large N theory, the
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corresponding expression in d = 2 is

�

0

I

(!) =

T

2

�(!)

�

Z

1

�

d"

�

1 +

�

2

"

2

�

1

e

"

� 1

�

=

T

2

�(!)� 0:68940 : : : (9.29)

where � = 2 ln((

p

5 + 1)=2). Notice that as m � T , we have now been

unable to approximate "

k

� k to get the leading result, as was done in

the � expansion. The spectral weight of the delta function to leading

order in the � expansion is, from (9.28), �T=9 = 0:3491 : : : T while the

N =1 d = 2 result is 0:3447 : : : T , which is remarkably close.

Next the low T regime on the quantum paramagnetic side of the tran-

sition, T � �

+

. Here both the � and large N expansions give the

following result in d = 2

�

0

I

(!) = T

�

�

+

T

2�c

2

)

�

(d�2)=2

e

��

+

=T

�(!) (9.30)

So the spectral weight of the delta function is exponentially small, since

free quasiparticles are thermally activated.

9.1.2 �

II

This is the continuum contribution to � which vanishes for ! < 2m.

At this order in � (or 1=N) there is a sharp threshold at ! = 2m but

we expect that this singularity will be rounded out when collisions are

included at order �

2

(1=N): we will not describe this rounding out here,

however. Although they have a strong e�ect at the threshold, collisions

are not expected to signi�cantly modify the form of �

0

II

(!) at higher

frequencies where the transport is predominantly collisionless. In par-

ticular, the ! !1 limit is precisely the T = 0 result [78]

�

0

II

(! !1) =

�S

d

2

d

d

�

�

�

!

c

�

�

�

d�2

(9.31)

9.2 Collisionless transport equations

The low order perturbative result for �(!) in Section 9.1 is clearly not

physically satisfactory. Due to the absence of any collisions between the

thermally excited particles, we found a singular delta function at ! = 0

and a sharp threshold at ! = 2m. Before we can repair these singu-

larities, we will present an alternative derivation of the delta function
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contribution at ! = 0: this will carried out using an equation of motion

analysis which clearly exposes the role of collisionless transport of ther-

mally excited particles [116]. The advantage of this new approach is that

we will subsequently be able to readily include the e�ects of collisions.

We saw in the previous section that, at the one-loop level, the only

e�ect of the (�

2

�

)

2

interaction was in inducing the T dependent mass

m in the propagators. This suggests that we perform our equation of

motion analysis with the following simpli�cation of the Hamiltonian in

(9.3):

H

0

= H

0

+H

ext

(9.32)

The �rst term, H

0

is the free particle part but with a renormalized mass

m

H

0

=

1

2

Z

d

d

x

�

�

2

�

+ c

2

(r

x

�

�

)

2

+m

2

�

2

�

�

; (9.33)

and H

ext

contains the coupling to the external `magnetic' �eld H

a

:

H

ext

= �

Z

d

d

xH

a

(x; t)T

a

��

�

�

(x; t)�

�

(x; t): (9.34)

As noted earlier, we shall be interested only in the linear response of

the current to the gradient

~

E

a

= �

~

r

x

H

a

(x; t), and it will be assumed

below that

~

E

a

is independent of x. Notice that, unlike Section 9.1, we

are making the gauge choice of coupling to H

a

rather than the vec-

tor potential

~

A

a

; this is for convenience, and should not change the

�nal gauge-invariant results. Strictly speaking, the renormalized mass

m which appears in H

0

also depends upon

~

E

a

: however to linear or-

der in

~

E

a

, and for the case of a momentum-independent interaction,

this `vertex correction' can be neglected, and we will do so here without

proof. The explicit form of the angular momentum current

~

J

a

can be

obtained by computing the equation of motion for the angular momen-

tum density and putting it in the form (9.6): in the present situation of

a x-independent

~

E

a

, the choice

~

J

a

= c

2

T

a

��

�

�

~

r

x

�

�

(9.35)

ensures that h

~

J

a

i vanishes when

~

E

a

= 0. Moreover h

~

J

a

i will be inde-

pendent of x for

~

E

a

non-zero. For completeness, let us also note here

the expression for the total momentum density,

~

P of the quantum �eld

theory H; this can be derived by studying the response of the action to

translations, as is discussed in standard graduate texts [248]:

~

P = �

�

~

r

x

�

�

: (9.36)
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Notice that it is quite distinct from

~

J

a

. In particular, in the absence of

an external potential,

~

P is conserved (i.e., it obeys an equation of the

form @

t

~

P +

~

r�

$

Q= 0 for some local �eld

$

Q), while

~

J

a

is not.

The subsequent analysis is simplest in terms of the normal modes

which diagonalize H

0

. Using the standard approach of diagonalizing

harmonic oscillator Hamiltonians we make the mode expansion

�

�

(x; t) =

Z

d

d

k

(2�)

d

1

p

2"

k

�

a

�

(k; t)e

i

~

k�~x

+ a

y

�

(

~

k; t)e

�i

~

k�~x

�

�

�

(x; t) = �i

Z

d

d

k

(2�)

d

r

"

k

2

�

a

�

(

~

k; t)e

i

~

k�~x

� a

y

�

(

~

k; t)e

�i

~

k�~x

�

;(9.37)

where the a(

~

k; t) operators satisfy the equal-time commutation relations

h

a

�

(

~

k; t); a

y

�

(

~

k

0

; t)

i

= �

��

(2�)

d

�

d

(

~

k �

~

k

0

)

h

a

�

(

~

k; t); a

�

(

~

k

0

; t)

i

= 0: (9.38)

It can be veri�ed that (9.4) is satis�ed, and H

0

is given by

H

0

=

Z

d

d

k

(2�)

d

"

k

h

a

y

�

(

~

k; t)a

�

(

~

k; t) + 1=2

i

(9.39)

We will also need the expression for the current

~

J

a

in terms of the a and

a

y

. We will only be interested in the case where the system carries a

position-independent current: for this case, inserting (9.37) into (9.35),

we �nd

~

J

a

(t) =

~

J

a

I

(t) +

~

J

a

II

(t)

~

J

a

I

(t) = ic

2

L

a

��
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d
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k; t)
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II
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L
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��

Z
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d
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(2�)
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~
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D

a

y
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(�

~

k; t)a

y

�

(

~

k; t)

E

+H:c:(9.40)

It should be evident that processes contributing to

~

J

a

II

require a mini-

mum frequency of 2m, and so

~

J

a

II

only contributes to �

II

(!). We will

therefore drop the

~

J

a

II

contribution below and approximate

~

J

a

�

~

J

a

I

.

The ease with which the high frequency components of �(!) can be sep-

arated out is an important advantage of the present formulation of the

quantum transport equations. Of course, at this simple free-�eld level

it is not di�cult to also include

~

J

a

II

, and rederive the complete results

for �

I

and �

II

obtained in Section 9.1: we will, however not do so in the
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interest of simplicity, but urge the reader to carry out this instructive

computation.

The central object in our presentation of transport theory shall be the

mean, time-dependent occupation number of the normal modes:

f

��

(

~

k; t) =

D

a

y

�

(

~

k; t)a

�

(

~

k; t)

E

(9.41)

in terms of which the expectation value of current is

D

~

J

a

(t)

E

= ic

2

T

a

��

Z

d

d

k

(2�)

d

~

k

"

k

f

��

(

~

k; t): (9.42)

The corresponding expression for the momentum density is

D

~

P (t)

E

=

Z

d

d

k

(2�)

d

~

kf

��

(

~

k; t): (9.43)

Notice the di�erence in the structure of the O(N) indices between (9.42)

and (9.43).

For the subsequent analysis it is convenient to choose a de�nite ori-

entation for the �eld H

a

in the O(N) space. As in Section 6.3, and the

discussion above (6.47), we choose the �eld which generates rotations in

the 1� 2 plane, i.e., H

a

= 0 except for the component a which couples

to the generator of O(N) with T

a

1;2

= �T

a

2;1

= 1. We will henceforth

denote this non-zero component simply by H , (and

~

E =

~

rH) and the

index a will be dropped. Similarly, the current

~

J

a

is non-zero only for

this component, and will be denoted

~

J . It is also not di�cult to see

that to linear order in

~

E, the distribution functions in (9.41) do not get

modi�ed for all components � > 2: this is because any change in these

components must be even in

~

E. This conclusion is also true to all orders

in the interaction u in H. We have therefore

f

��

(

~

k; t) = �

��

n("

k

) � > 2 or � > 2 (9.44)

where n(") is the Bose function in (7.63).

The interesting transport phenomena all occur within the 1; 2 compo-

nents of f

��

(

~

k; t). Within this subspace, it is helpful to transform to a

basis where the external �eld is diagonal. We therefore de�ne

a

�

(

~

k; t) �

a

1

(

~

k; t)� ia

2

(

~

k; t)

p

2

; (9.45)

and we will occasionally refer to a

+

(a

�

) as the annihilation operators

for the particles (holes). The Hamiltonian H

0

can also be expressed
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Particles Holes

P

J

Fig. 9.3. Schematic of the contribution of the particle- and hole-like excita-

tions to the total momentum

~

P and the angular momentum current

~

J . The

particles are moving to the right, while the holes are moving to the left. Their

contributions to

~

P cancel out, while their contributions to

~

J add.

in terms of the a

�

, and it remains diagonal, with the same form as in

(9.33). The current becomes

D

~

J

E

=

Z

d

d

k

(2�)

d

X

�

�

~

c

2

k

"

k

D
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(

~
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(

~

k; t)

E

=

Z
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d
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(2�)

d
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�

�
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2

~

k

"

k

f

�

(

~

k; t) (9.46)

where the index � is assumed here and below to extend over the values

�1, and f

�

� f

��

are the particle distribution functions (the components

of f which are o�-diagonal in this � space can easily be shown to vanish).

Let us also note the expression for the momentum density

~

P =

Z

d

d

k

(2�)

d

X

�

~

kf

�

(

~

k; t) (9.47)

An important di�erence between (9.46) and (9.47) is the � inside the

summation in (9.46) which is absent from (9.47). Thus the angular

momentum current is proportional to the di�erence of the particle and

hole number currents, while the momentum density is proportional to

their sum; see Fig 9.3.

We have introduced all the basic formalism necessary to introduce the

transport equations, which are the equations of motion of the distribu-

tion functions f

�

(

~

k; t). These are obtained by computing the Heisenberg

equations of motion of a

�

under the Hamiltonian H

0

in (9.32). In deriv-

ing these equations we make approximations similar to those made for

~

J :

we drop all terms involving the product of two a's or a

y

's as these only
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contribute to the high frequency �

II

(the mixing of these modes with

the f

�

can also be neglected to linear order in

~

E). A straightforward

computation then gives the central result of this section

�

@

@t

+ �

~

E(t) �

@

@

~

k

�

f

�

(

~

k; t) = 0: (9.48)

Let us solve (9.46,9.48) in linear response. In the absence of

~

E, the

distribution function has the equilibrium value given by Bose function

f

�

(

~

k; t) = n("

k

). We Fourier transform from time, t, to frequency !,

and parameterize to linear order in

~

E:

f

�

(

~

k; !) = 2��(!)n("

k

) + �

~

k �

~

E(!) (k; !); (9.49)

where we have used the fact that only

~

E breaks spatial rotation invari-

ance and O(N) symmetry, to conclude that  is independent of

~

k=k and

�. Now inserting in (9.48), and using @"

k

=@

~

k =

~

k="

k

it is simple to solve

for  to leading order in

~

E:

 (k; !) =
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�i!
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(9.50)

Finally we insert in (9.46) and deduce the conductivity

�(!) =

2c

4

�i!
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d

k

(2�)

d

k

2

x

"

2

k

�

�

@n("

k

)

@"

k

�

(9.51)

The real part of this agrees with (9.26). Notice that the leading factor

of 2 comes from the sum over �. The current is therefore carried equally

by the thermally excited particles and holes: they move in opposite di-

rections to create a state with vanishing momentum but non-zero charge

current. We will see in the next section that this charge current can be

relaxed by collisions among the particles and holes.

9.3 Collision-dominated transport

We will proceed to improve (9.48) by including collisions among the

excitations: these collisions were previously considered in Section 7.2.2

where they led to a �nite lifetime for the excitations. Here we will study

how the same collisions degrade the transport of angular momentum

current.

A full analysis and derivation of the collision contributions to the

transport equation is quite lengthy and involved, and beyond the scope

of our discussion here. However, the physical interpretation of the �nal
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result is quite straightforward, and with the bene�t of hindsight, it is

possible to guess the collision terms by a simple application of Fermi's

golden rule. We shall follow this latter route here, and omit presentation

of a complete, formal derivation. We will begin, in Section 9.3.1, by using

the � expansion on the Hamiltonian H in (9.3). The large N approach

will be considered later in Section 9.3.2.

9.3.1 � expansion

The basic idea is to treat (9.48) as a rate equation for the occupation

probability of particle states with momentum

~

k and polarization �. The

terms present in (9.48) then simply represent the 
ow of particles with

their momenta obeying `Newton's Law' d

~

k=dt = �

~

E. Collisions can

therefore be accounted for by including terms which represents the rate

at which particles in state

~

k collide with other particles (the `out' terms)

and also the rate at which particles in other states scatter into the state

~

k (the `in' terms). So if there is a matrix element M for scattering of

two particles with momenta and polarizations

~

k, � and

~

k

1

, �

1

into states

~

k

2

, �

2

and

~

k

3

, �

3

, then Fermi's Golden Rule implies that the right-hand

side of the transport equation will acquire the term
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(9.52)

summed over momenta

~

k

1;2;3

and polarizations �

1;2;3

. The expression

outside the curly brackets is clearly the collision rate as speci�ed by

Fermi's Golden Rule. Inside the curly brackets we have the factors as-

sociated with the `out' and `in' processes respectively: particles entering

into a collision are being annihilated and have associated with them

the average Bose matrix element




jhn

k

� 1ja

k

jn

k

ij

2

�

= f(k) (where

n

k

is the occupation of state k in one realization of the thermal en-

semble), while those emerging from a collision have the Bose factor

D

jhn

k

+ 1ja

y

k

jn

k

ij

2

E

= 1 + f(k) .

Applying the rules discussed above, a lengthy, but straightforward

computation gives us the rather formidable transport equation below [116];

however, the interpretation of the individual terms is quite simple, as
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we have already noted.
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(9.53)

with � = �1. The �rst two pairs of collisions terms represent processes

within those with polarizations in the 1 � 2 plane, while the last two

pairs (proportional to (N � 2)) represent collisions with particles with

polarizations with � > 2: in linear response, the latter have their distri-

bution function given simply by the Bose function, as was noted earlier

in (9.44).

In writing down (9.53), we have omitted terms associated with col-

lisions which involve creation or annihilation of particle-hole pairs, as

they have a negligible contribution in both the high and low T limits in

the � expansion (such processes will be included in our later discussion of

the 1=N expansion). Thus a collision in which, e.g., a positively charged

particle of momentum

~

k turns into two positively charged particles and

a negatively charged hole with momenta

~

k

1

,

~

k

2

, and

~

k

3

respectively,

is permitted by the symmetries of the problem. However, it remains to

evaluate the phase space over which such collisions conserve total energy

and momentum. In the low T quantum paramagnetic region, we need

a particle with energy at least 3�

+

to have su�cient energy to emit

a particle-hole pair, and such particles are exponentially rare. In the

opposite high T region, notice that the `mass' m of the particles/holes
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is of order

p

�T (below Eqn (9.23)) while their momentum is of order

T . So to leading order in � we may just replace the energy momentum

relation (7.64) by "

k

= ck (see also the discussion below (9.28)). The

particle-hole pair-creation collision requires that

~

k =

~

k

1

+

~

k

2

+

~

k

3

and

k = k

1

+k

2

+k

3

. This is only possible if all three momenta are collinear,

and this process therefore has vanishing phase space in the high T limit.

More generally, for a non-zero m, the phase space vanishes as �! 0.

We will analyze the solutions of (9.53) separately in the high T and

low T paramagnetic regions of Figs 5.2, 5.3 and 8.3.

9.3.1.1 High T , T � �

+

To obtain the T � �

+

limit of the scaling results for conductivity as

encapsulated in (9.17), it is su�cient to replace the interaction strength

u on the right hand side of (9.53) by the �xed point value discussed in

Chapter 8 and in (8.18). For the result to leading order in �, we can set

u =

48�

2

c

3

(N + 8)

��

�

(9.54)

The prefactor of c

3

has been deduced by dimensional analysis, and did

not appear in Chapter 8 because we used units with c = 1 there. We

expect that in the high T limit, � � T=c, as that is the only natural

scale in the problem; in any case, to leading order in �, the precise value

of � is not needed.

The next step is to linearize the transport equation (9.53) by using

the ansatz (9.49), and to examine the structure of its solution in the

limit of small �. First, we �nd that the � dependencies in (9.49) and

(9.53) are completely compatible, in that the linearized equation for the

unknown function  (k; !) is independent of �. Then we perform a simple

dimensional analysis of the linear integral equation satis�ed by  . The

dependencies on � (for small �), T and c can all be scaled out, and it is

not di�cult to show that the solution of the linear integral equation can

be written in the form

 (k; !) =

c

2

�

2

T

3

	

�

!

�

2

T

;

ck

T

�

; (9.55)

where the dimensionless complex function 	 satis�es a parameter-free

and universal linear integral equation: this equation has to be solved

numerically [116], and we will not discuss the details of the numerical

analysis here. Finally, computing the current by using (9.46) and (9.49)
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1−εω

Φ'σ+

Fig. 9.4. Structure of the real part, �

0

�+

(!; 0) = �

��

(!; 0), of the universal

scaling functions �

��

in (9.17) in the high T region, T � �

�

, as a function

of ! = !=T in the limit of small �. The peak at small ! has a width of order

�

2

and a height of order 1=�

2

: this feature of the conductivity is denoted by

�

I

. The collisionless contribution (denoted �

II

) begins at ! of order �

1=2

; as

!!1, this contribution is a number of order unity times !

1��

we see that the conductivity �

I

can be written in the form

�

I

(!) =

(T=c)

d�2

�

2

�

�I

�

!

�

2

T

�

(9.56)

where the scaling function �

�I

is simply related to 	. This result is

clearly compatible with the scaling form (9.17) for the total conductivity.

Notice that the natural frequency scale in (9.55, 9.56) is of order �

2

T|

this is the scale over which the delta function in �

0

I

was expected to

be broadened. Further the peak value of the d.c. conductivity, which

diverged at the one-loop level, is seen to be of order 1=�

2

. (These features

are sketched in the schematic of the frequency dependent conductivity

in the high T limit in Fig 9.4).

The function �

�I

therefore de�nes the smoothening of the delta func-

tion in (9.26) and has the same total spectral weight|from (9.28) we

see that it satis�es

Z

1

0

de!Re�

�I

(e!) =

�

18

: (9.57)

in the high T limit. It should be noted that this sum rule is special to
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Fig. 9.5. The real part of the universal function �

�I

as a function of e! =

!=�

2

T , de�ned in (9.56) in the high T limit �

+

=T = 0. This function de-

scribes the inelastic collision-induced broadening of the ! = 0 delta function

in Fig 9.2 at a frequency scale of order �

2

T . The conductivity has an addi-

tional continuum contribution (�

II

(!)) at frequencies larger than ! � �

1=2

T

which is not shown above (see Fig 9.4).

the leading order in � being considered here. For � of order unity, there

is no sharp distinction between �

I

and �

II

and there is no sum rule:

indeed the integral in (9.57) when carried out over the total � will be

divergent. For any realistic lattice model there is a large microscopic

energy scale (� J) beyond which the universal scaling results do not

apply, and the entire spectral weight (including frequencies beyond J) is

not divergent; this latter spectral weight satis�es a sum rule related to

non-universal microscopic quantities, and is unrelated to the universal

result (9.57).

A complete numerical solution for the function �

0

�I

has been carried

out in the high T limit in Ref [116] for the case N = 2, and the solution

is sketched in Fig 9.5. Most important is the value of �

0

�I

(0) which gives

the value of the d.c. conductivity [116]

�(0) =

Q

2

�h

�

T

c

�

d�2

0:1650

�

2

N = 2, T � �

�

: (9.58)
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As noted earlier, the result is a pure number times Q

2

=�h in d = 2 (recall

that Q is the charge of the carriers, which we usually absorb into the

de�nition of H). These are among the main results for low-frequency

transport in this chapter.

9.3.1.2 Low T , T � �

+

First, we should determine the value of u that must be used in the

transport equation (9.53). Now �

+

is the largest scale in the problem,

and so the generalization of the result (9.54) suggests that

u � �c

3

(�=c)

�

: (9.59)

However, this result is not adequate, as we will now argue that the limits

T ! 0 and � ! 0 do not commute. For T � �

+

, as in Sections 4.5.2

and 6.2, all the thermally excited particles are at energies just above the

gap, and so we can approximate their dispersion by

"

k

= �

+

+

c

2

k

2

2�

+

: (9.60)

The typical value of the particle momentum is k �

p

�

+

T=c. The

coupling (9.59) would imply that these quadratically dispersing, slowly

moving particles scatter with a T -matrix which is independent of mo-

mentum at low momentum. However, we know from elementary quan-

tum mechanics [488], that this Born approximation result is incorrect;

the full T -matrix scales as � k

d�2

as the momentum transfer k ! 0,

and so we should really use a momentum dependent coupling u of order

u � k

d�2

�

5�2d

+

c

2d�2

; (9.61)

where the powers of �

+

and c were deduced by a dimensional comparison

with (9.59). (Notice that (9.61) diverges as k ! 0 in d = 1, where the

present perturbative transport equation cannot be applied; there, we

should instead use the exact S matrix in (6.13), along with the exact

transport analysis developed in Section 6.2.) We will not attempt a

complete solution of (9.53) with a momentum dependent u here, but will

be satis�ed with a dimensional analysis which exposes the T dependence

of physical observables. By an analysis similar to that leading to (9.55),

it is not di�cult to show that in the limit T � �

+

, the solution of the

linearized integral equation satis�ed by  takes the form

 (k; !) =

c

2

�

'

e

��

+

=T

�

+

T

	

 

!�

'

;

ck

p

�

+

T

!

; (9.62)
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where the particle scattering time, �

'

, is deduced by a dimensional analy-

sis of the collision term in (9.53) with the momentum dependent coupling

u in (9.61):

1

�

'

� T

�

T

�

+

�

2(d�2)

e

��

+

=T

: (9.63)

Notice that this result for �

'

. is consistent with the d = 2 result in

(7.68). Now we can compute the current by inserting (9.62) into (9.46)

and (9.49), and the result for �

I

takes the form

�

I

(!) = T�

'

�

�

+

T

2�c

2

�

(d�2)=2

e

��

+

=T

�

�+I

(!�

'

) (9.64)

Notice that this is consistent with (9.30) in the collisionless limit �

'

!

1. The scaling function �

�+I

is expected to be a constant when its

argument vanishes, and so the d.c. conductivity can be obtained from

(9.63) and (9.64):

�

I

(0) �

�

T

�

+

�

�3(d�2)=2

�

�

+

c

�

(d�2)

: (9.65)

This result is valid for d > 2, where we see that the d.c. conductivity

actually diverges as T ! 0. The total spectral weight in the `Drude'

peak of the d.c. conductivity, �

I

, is exponentially small, � e

��

+

=T

, but

the weak inelastic scattering between the thermally excited particles

is also exponentially rare; the two exponential factors cancel each other

out, and we get a power-law divergent conductivity. In d = 2, because of

the logarithmic factors obtained in (7.68), we expect �

I

(0) to diverge as

(ln(�

+

=T ))

2

; recall that this logarithmic divergence was absence in the

high T limit (T � �

+

), where the d.c. conductivity was a completely

universal constant in d = 2. Finally, as we have already noted, these

methods do not apply in d = 1, but it is interesting note that the Einstein

relation (9.11), when combined with our earlier results (6.12) and (6.27),

gives us a d.c. conductivity, � � T

�1=2

, which also diverges as T ! 0.

9.3.2 Large N limit

A closely related analysis of collisions can also be carried out in the large

N limit. It has the advantage of working directly in d = 2 at all stages,

and so we will brie
y discuss its formulation here [430].

The central simpli�cation of the large N limit is apparent by a glance

at the right-hand side of (9.53): the

~

E �eld changes the distribution of
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particles only with polarization � = 1; 2, but their scattering is dom-

inated completely by collisions with particles with polarization � > 2

(notice the prefactor of (N � 2) in some of the collision terms). The

collisions with these particles actually appear in the form of interactions

with the 
uctuations of the � �eld which were considered in Section 7.2.

The propagator, � of this � �eld was given in (7.42), and the upshot of

the result (9.44) is that this propagator remains unchanged in the pres-

ence of the

~

E �eld. To leading order in 1=N we can then simply consider

the Gaussian 
uctuations of the � �eld as a an in�nite set of harmonic

oscillators with density of modes given by the imaginary part of 1=�.

These harmonic oscillators are coupled to the normal modes of the or-

der parameter n by the �n

2

vertex in (5.18). The collision terms arise

entirely from this vertex, and their form can be deduced from Fermi's

Golden Rule as discussed earlier. The resulting generalization of (9.48)

is then

�
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; (9.66)

where the function � is de�ned by analytic continuation from (7.42).

Notice that this equation is formulated directly in d = 2, and is entirely

free of parameters, other than the energy scales T and �

+

(through

the value of "

k

in (7.64)). So it is already in the scaling limit, and its

solution will lead to a � consistent with the scaling form (9.17).

The equation (9.66) can of course also be formulated in arbitrary d,

and it is reassuring to verify that in their overlapping regions of validity
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(N large and � small) the results (9.53) and (9.66) are in precise agree-

ment with each other. However, there are important di�erences between

the d = 2, largeN analysis of (9.66) and the small � analysis of (9.53) dis-

cussed earlier. Now we have to use the full dispersion "

k

=

p

c

2

k

2

+m

2

in (7.64), and in no regime is it possible to approximate it by "

k

= ck.

Also, unlike (9.53), (9.66) does contain terms corresponding to collisions

which cause production of new particle-hole pairs.

As in the case of the � expansion, it is useful to scale out the small

parameter 1=N from the transport equation (9.66). Using the ansatz

(9.49), and obtaining the linear integral equation for  , it can be shown

that its solution can be written in the form

 (k; !) =

Nc

2

T

3

	

�

N!

T

;

ck

T

;

�

+

T

�

(9.67)

where again the dimensionless complex function 	 satis�es a parameter-

free and universal linear integral equation. Computing the current by

using (9.46) and (9.49), it follows that the analog of (9.56) and (9.64) is

in d = 2

�

I

(!) = N�

�+I

�

N!

T

;

�

+

T

�

: (9.68)

The natural frequency scale in (9.67, 9.68) is of order T=N{this is the

scale, from (7.71), over which the delta function in �

0

I

was expected to be

broadened. A schematic of the large N frequency dependent conductiv-

ity in the high T limit in Fig 9.6). The sum rule on �

0

�+I

corresponding

to (9.57) is speci�ed by (9.29).

A complete numerical solution for the function �

0

�+I

has been carried

out in the high T limit in d = 2 and the solution is shown in Fig 9.7. The

largeN value of �

0

�+I

(0; 0) which gives the value of the d.c. conductivity

was obtained as

�(0) =

Q

2

�h

0:1077N d = 2, T � �

�

: (9.69)

These results complement similar results discussed earlier in the � ex-

pansion.

9.4 Physical interpretation

This is a convenient point to emphasize some interesting physical fea-

tures of the above computations of the universal behavior of the conduc-

tivity near a quantum-critical point in d = 2. The central property is
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Fig. 9.6. The analog of Fig 9.4 for the large N limit in d = 2.

the basic scaling form (9.17) and the above computations have all been

aimed at describing the structure in the scaling function �

�+

. A remark-

able property of the result emerges in the high T region of Fig 8.3: the

dynamical conductivity in d = 2 depends upon no material parameters

at all, and is given by the pure universal function �

�+

(0; !=T ).

Here we focus on two limiting regions of this result in the high T

region.

First, consider the high frequency regime ! � T . Here we found that

the perturbative analysis considered Section 9.1 gave an adequate de-

scription of the physics. The main result is contained in (9.31) and has

a simple physical interpretation. The system is in its ground state, and

the oscillating external �eld creates a particle-hole pair. The conduc-

tivity is then determined by the subsequent motion of this particle-hole

pair. As we are e�ectively at the critical coupling, there is a gapless

spectrum, and this particle-hole pair will also create a cascade of lower

energy particle hole pairs: such processes lead to corrections to (9.31)

which are higher order in � (computed in Ref [143]) or 1=N (computed

in Ref [78]). It is clear, however, that all these processes are essentially

coherent: the system was originally in its phase-coherent ground state,

and the particle-hole pairs created move coherently in response to the

external �eld. This coherent transport is characterized by the universal

number �

�+

(1; 0).
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Fig. 9.7. The real part of the large N universal function �

�+I

as a function

of e! = N!=T , de�ned in (9.68) in the high T limit �

+

=T = 0. This function

describes the inelastic collision-induced broadening of the ! = 0 delta func-

tion in Fig 9.2 at a frequency scale of order T=N . The conductivity has an

additional continuum contribution (�

II

(!)) at frequencies larger than ! � T

which is not shown above (see Fig 9.6).

Now, consider the low frequency regime ! � T : this also includes the

d.c. case. Here, the interpretation is completely di�erent. The system is

initially at �nite temperature, with an incoherent density of pre-existing

of particle-hole pairs already present. The external �eld accelerates the

particles and holes in opposing directions, but their repeated collisions

cause them to relax to local equilibrium. The transport is therefore due

to a collision dominated drift of these excitations, and is controlled en-

tirely by inelastic processes. Now, clearly, the low frequency transport

is entirely incoherent. However, because the collision cross-section be-

tween the excitations has a universal form near a quantum critical point,

the remarkable fact is that the d.c. conductivity remains universal: it

is given by the number �

�+

(0; 0). Results for this number appear in

(9.58) in the � expansion, and in (9.69) in the 1=N expansion.

The distinct physical interpretations of �

�+

(1; 0) and �

�+

(0; 0) make

it clear that there is no reason for them to have equal values. This di�er-
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Fig. 9.8. The value of �(!; T ! 0) in d = 2 at the quantum-critical coupling

s = 0 (in the notation of Chapter 8) or g = g

c

(in the notation of Chapter 5).

The value �

�+

(0; 0) characterizes the single point ! = 0.

ence leads to an unusual structure in the T ! 0 limit of the conductivity

in d = 2: in Fig 9.8 we show the universal value of �(!; T ! 0). For all

! > 0 we have a frequency independent conductivity given by the num-

ber �

�+

(1; 0) describing coherent transport; however only the single

point ! = 0 is given by the value �

�+

(0; 0) which characterizes inco-

herent transport. For laboratory measurements, we note that a degree

Kelvin in temperature converts approximately to 20 Ghz frequency by

the factor k

B

=h; so even a radio frequency measurement is usually com-

fortably in the regime �h! � k

B

T , and will therefore measure �

�+

(0; 0),

given by the isolated ! = 0 point in Fig 9.8.

In physical applications of the N = 2 transport analysis of this chap-

ter (discussed a bit more explicitly in Section 9.5), we will interpret �

as the electrical conductivity of carriers of charge Q (Q = 2e for the

superconductor-insulator transition); then, in laboratory units, the con-

ductivity is the quantum unit of conductance, Q

2

=�h, times the scaling

functions computed here. So, in d = 2, the high T region has a d.c. con-

ductivity which is Q

2

=�h times a universal number. The reader may be

familiar with other physical situations in which universal conductances

of order e

2

=h have been discussed previously: these include Landauer

transport in one dimensional microstructures [19], universal conductance


uctuations [17, 300], or critical points in non-interacting electron mod-

els of transitions between quantum Hall plateaus [85, 231, 230]. However
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in all these cases, the transport is phase coherent and the phase-breaking

length is assumed to be larger than the sample size. In contrast, the

conductivity studied here near an interacting quantum critical point is

dominated entirely by inelastic processes; it is therefore quite remarkable

that the d.c. conductivity is universal despite being entirely incoherent.

9.5 Applications and extensions

An important application of the transport results of this chapter is for

the N = 2 case, which describes a super
uid to insulator transition

in lattice models of bosons. This connection will become clearer in

Chapter 10, where it will be discussed further. However, an intuitive

understanding can be gained by returning to the lattice Hamiltonian

representation in (5.1), and interpreting it as an e�ective Hamiltonian

for a regular two-dimensional array of mesoscopic superconducting quan-

tum dots [129]. For N = 2, there is only one component of the angular

momentum operator,

^

L

i

(see (2.56)). We interpret

^

L

i

as the number

operator for bosonic Cooper pairs on a superconducting quantum dot at

site i, minus a �xed integer which equals the number of Cooper pairs on

an isolated island (the role of this integer will become clearer in Chap-

ter 10). The term proportional to gJ in (5.1) is a caricature of the addi-

tional Coulomb energy required for deviation in the number of Cooper

pairs on a dot from its optimum value. The angle, �, de�ning the orien-

tation of
^
n (as in (2.38)), is taken as the phase of the superconducting

order parameter. Then the term proportional to J represents Josephson

tunneling of Cooper pairs between neighboring dots. The phase of the

rotor model with long range order in n represents the super
uid, while

the quantum paramagnet is the Mott insulator of Cooper pairs. A large

number of experiments have measured d.c. transport on granular �lms,

Josephson junction arrays and homogeneously disordered superconduc-

tors undergoing a zero temperature transition from a superconductor to

an insulator; one of the earliest such experiments was carried out by

Strongin et al. [482] and reviews of more recent works are in Refs [221]

and [308] for reviews. However these experiments cannot be quantita-

tively modeled by the simple models we have considered here: all exper-

imental systems have an appreciable amount of randomness, and this

is surely a relevant perturbation on the simple clean quantum critical

point we have studied here. Further, we have entirely ignored fermionic

excitations [496, 446], and these could be important near the critical

point, although there are indications in recent simulations [178] that the
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neglect of fermionic excitations is justi�ed. In some interesting recent

experiments [411], a disordered superconducting �lm was coupled to a

tunable, dissipative metallic bath, and some initial theoretical attempts

to explain them have also appeared [521]|we will brie
y consider the

general consequences of fermionic excitations in Chapter 12. Finally,

the long-range part of the Coulomb interaction is probably also relevant

at the super
uid-insulator transition: this issue has been addressed in

Refs [158, 534, 533]. Nevertheless, the scaling forms for the conductiv-

ity, and our general discussion on the crossover between coherent and

incoherent transport at a frequency scale of order k

B

T=�h, is expected to

apply to these more complex systems too.

Dynamical measurements of the conductivity at frequencies of order

k

B

T=�h in systems near a super
uid-insulator transition are not yet avail-

able. However, such measurements have been recently made for a system

near a metal-insulator transition by Lee et al. [298], and nicely exhibit

scaling as a function of !=T . Related measurements [139] have also been

made near quantum Hall transitions in d = 2, and are again consistent

with scaling as a function of !=T . As we discussed at the conclusion of

Section 8.2.2, universal time scales of order �h=k

B

T require that the quan-

tum critical theory have non-vanishing interactions between its thermal

excitations, for otherwise the interactions are \dangerously irrelevant"

and the characteristic times are higher powers of 1=T . These quantum

Hall measurements therefore indicate that the non-interacting electron

models for these transitions [230, 469] have to be extended to include

interactions.
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Other Models
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Boson Hubbard model

The Hubbard model was originally introduced as a description of the

motion of electrons in transition metals, with the motivation of under-

standing of their magnetic properties. This original model remains a

very active subject of research today: important progress has been made

in recent years by examining its properties in the limit of large spatial

dimensionality [177, 172].

In this chapter, we shall only examine the much simpler \boson Hub-

bard model", following the analysis in an important paper by Fisher,

Weichman, Grinstein and Fisher [160]. As the name implies, the elemen-

tary degrees of freedom in this model are spinless bosons, which take the

place of the spin-1/2 fermionic electrons in the original model. These

bosons could represent Cooper pairs of electrons undergoing Josephson

tunneling between superconducting islands, or Helium atoms moving on

a substrate. Processes in which the Cooper pair boson decays into a pair

of electrons are neglected in this simple model, and this caveat must be

kept in mind while discussing experimental applications.

Many of the results discussed in this chapter were also obtained in

early literature on quantum transitions in anisotropic magnets in the

presence of an applied magnetic �eld. These are reviewed by Kaganov

and Chubukov [258], who also gave an extensive discussion of experi-

mental applications. We will, however, not use their formulation here.

Apart from its direct physical applications, the importance of the bo-

son Hubbard model lies in providing one of the simplest realizations

of a quantum phase transition which does not map onto a previously

studied classical phase transition in one higher dimension. The con-

tinuum theory describing this transition includes complex Berry phase

terms, which, in the simplest formulation of the theory, do not become

real even after analytic continuation to imaginary time. We shall meet

257
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some genuinely new physical phenomena associated with quantum criti-

cal points in a relatively simple context, and the insight will be generally

applicable to more complicated models in subsequent chapters.

Let us de�ne the degrees of freedom of the model of interest. We

introduce the boson operator

^

b

i

which annihilates bosons on the sites,

i, of a regular lattice in d dimensions. These Bose operators and their

Hermitian conjugate creation operators obey the commutation relation

[

^

b

i

;

^

b

y

j

] = �

ij

; (10.1)

while two creation of annihilation operators always commute. It is also

useful to introduce the boson number operator n̂

bi

n̂

bi

=

^

b

y

i

^

b

i

(10.2)

which counts the number of bosons on each site. We allow an arbitrary

number of bosons on each site: so the Hilbert space consists of states

jfm

j

gi, which are eigenstates of the number operators

n̂

bi

jfm

j

gi = m

i

jfm

j

gi; (10.3)

and every m

j

in the set fm

j

g is allowed to run over all non-negative

integers. This includes the `vacuum' state with no bosons at all jfm

j

=

0gi.

The Hamiltonian of the boson Hubbard model is

H

B

= �w

X

hiji

�

^

b

y

i

^

b

j

+

^

b

y

j

^

b

i

�

� �

X

i

n̂

bi

+ U

X

i

n̂

bi

(n̂

bi

� 1): (10.4)

The �rst term, proportional to w, allows hopping of bosons from site

to site (hiji represents nearest neighbor pairs); if each site represents a

superconducting grain, then w is the Josephson tunneling which allows

Cooper pairs to move between grains. The second term, �, represents

the chemical potential of the bosons: changes in the value of � changes

the total number of bosons. Depending upon the physical conditions, a

given system can either be constrained to be at a �xed chemical potential

(the grand canonical ensemble), or have a �xed total number of bosons

(the canonical ensemble): theoretically it is much simpler to consider

the �xed chemical potential case, and results at �xed density can always

be obtained from them after a Legendre transformation. Finally, the

last term, U > 0, represents the simplest possible repulsive interaction

between the bosons. We have taken only an on-site repulsion: this

can be considered to be the charging energy of each superconducting
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grain. O�-site and longer-range repulsion are undoubtedly important in

realistic systems, but are neglected in this simplest model.

There is a basic similarity between the boson Hubbard model and

the O(N) rotor Hamiltonian H

R

in (5.1) which is useful in understand-

ing their respective physical properties, and was indicated in Section 9.5.

First, on the issue of symmetries. The rotor Hamiltonian H

R

was invari-

ant under global O(N) rotation of the rotor �elds
^
n

i

and

^

L

i

; the present

H

B

is invariant under a global U(1) � O(2) phase transformation under

which

^

b

i

!

^

b

i

e

i�

: (10.5)

Now notice that the w term in H

B

is quite similar to the J term in

H

R

: both couple neighboring sites in a manner which prefers a state

which breaks the global symmetry. However these terms compete with

Jg term in H

R

, or the U term in H

B

, both of which are completely local

and prefer states which are invariant under their respective symmetry

transformations. So, by analogy with H

R

, we may expect a quantum

phase transition in H

B

as a function of t=U between a state in which

the U(1) symmetry (10.5) is unbroken to one in which it is broken.

There is, however, a crucial di�erence between H

R

and H

B

which

requires a more careful discussion of the symmetries in the two mod-

els. Recall that a consequence of the O(N) symmetry of H

R

was the

conservation of total angular momentum in H

R

; similarly we have the

conservation of the total number of bosons

^

N

b

=

X

i

n̂

bi

; (10.6)

it is easily veri�ed that

^

N

b

commutes with

^

H . Notice that in H

R

the

external �eld H coupled to the conserved total angular momentum; the

term analogous to this is the chemical potential � in H

B

which couples

to

^

N

b

. This correspondence also brings out the di�erence. Recall that

all of our analysis of H

R

was carried out in zero �eld H = 0, and we

only examined the linear response to an in�nitesimal external �eld H.

However, the choiceH = 0 was a natural one, as it was only for this value

that the remainder of H

R

was O(N) invariant (at least for N � 3). In

contrast, notice that the � term in H

B

does not break any symmetries,

and H

B

remains invariant under (10.5) for any value of �. So there is

no natural symmetry criterion by which we can prefer a speci�c value

of �, and we have no choice but to examine H

B

for all �. (Even for the

case N = 2, the choice H = 0 for H

R

can be made from the requirement
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of a \particle-hole" symmetry under which n

i

! �n

i

, while L

i

remains

invariant; there is no such corresponding symmetry for H

B

.) It will turn

out that the results for H

B

for general �, will also allow us to understand

H

R

for �nite non-zero H.

We will begin our study of H

B

by introducing a simple mean �eld

theory in Section 10.1. The continuum quantum theories describing


uctuations near the quantum critical points will then introduced in

Section 10.2.

10.1 Mean �eld theory

The strategy, as in any mean �eld theory, will be to model the properties

of H

B

by the best possible sum, H

MF

of single site Hamiltonians:

H

MF

=

X

i

 

��

X

i

n̂

bi

+ Un̂

bi

(n̂

bi

� 1)�	

�

B

^

b

i

�	

B

^

b

y

i

!

; (10.7)

where the complex number 	

B

is a variational parameter. We have

chosen a mean-�eld Hamiltonian with the same on-site terms asH

B

, and

added an additional term with a `�eld' 	

B

which represents the in
uence

of the neighboring sites: this �eld has to be self-consistently determined.

Notice that this term breaks the U(1) symmetry, and does not conserve

the total number of particles: this is to allow for the possibility of broken-

symmetric phases, while symmetric phases will of appear at the special

value 	

B

= 0. As we saw in the analysis of H

R

, the state which breaks

the U(1) symmetry will have a non-zero sti�ness to rotations of the order

parameter; in the present case this sti�ness is the super
uid density

characterizing a super
uid ground state of the bosons.

Another important assumption underlying (10.7) is that the ground

state does not spontaneously break a translational symmetry of the lat-

tice, as the mean-�eld Hamiltonian is the same on every site. Such

a symmetry breaking is certainly a reasonable possibility, but we will

ignore this complication here for simplicity.

We will determine the optimum value of the mean-�eld parameter

	

B

by a standard procedure. First, determine the ground state wave-

function of H

MF

for an arbitrary 	

B

: as H

MF

is a sum of single site

Hamiltonians, this wavefunction will simply be a product of single-site

wavefunctions. Next, evaluate the expectation value of H

B

in this wave-

function. By adding and subtracting H

MF

from H

B

, we can write the
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Zw/U

Fig. 10.1. Mean �eld phase diagram of the ground state of the boson Hubbard

model H

B

in (10.4). The notation M.I. n refers to a Mott insulator with

n

0

(�=U) = n.

mean-�eld value of the ground state energy of H

B

in the form

E

0

M

=

E

MF

(	

B

)

M

� Zwh

^

b

y

ih

^

bi+ h

^

bi	

�

B

+ h

^

b

y

i	

B

(10.8)

where E

MF

(	

B

) is the ground state energy of H

MF

, M the number of

sites of the lattice, Z is the number of nearest neighbors around each

lattice point (the `co-ordination number'), and the expectation values

are evaluated in the ground state of H

MF

. The �nal step is to minimize

(10.8) over variations in 	

B

. We have carried out this step numerically

and the results are shown in Fig 10.1.

Notice that even on a single site, H

MF

has an in�nite number of

states, corresponding to the allowed values m � 0 of the integer number

of bosons on each site: the numerical procedure necessarily truncates

these states at some large occupation number, but the errors are not

di�cult to control. In any case, we will show that all the essential

properties of the phase diagram can be obtained analytically. Also by

taking the derivative of (10.8) with respect to 	

B

it is easy to show that

at the optimum value of 	

B

	

B

= Zwh

^

bi; (10.9)
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this relation, however, does not hold at a general point in parameter

space.

First, let us consider the limit w = 0. In this case the sites are

decoupled, and the mean-�eld theory is exact. It is also evident that

	

B

= 0, and we simply have to minimize the on-site interaction energy.

The on-site Hamiltonian involves only the operator n̂, and the solution

involves �nding the boson occupation number (which are the integer-

valued eigenvalues of n̂) which minimizes H

B

. This is simple to carry

out, and we get the ground state wavefunction

jm

i

= n

0

(�=U)i (10.10)

where the integer-valued function n

0

(�=U) is given by

n

0

(�=U) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 for �=U < 0

1 for 0 < �=U < 1

2 for 1 < �=U < 2

.

.

.

.

.

.

n for n� 1 < �=U < n

(10.11)

So each site has exactly the same integer number of bosons which jumps

discontinuously whenever �=U goes through a positive integer. When

�=U is exactly equal to a positive integer, there are two degenerate states

on each site (with boson numbers di�ering by 1) and so the entire system

has a degeneracy of 2

M

. This large degeneracy implies a macroscopic

entropy; it will be lifted once we turn on a non-zero w.

We now consider the e�ects of a small non-zero w. As is shown in

Fig 10.1, the regions with 	

B

= 0 survive in `lobes' around each w = 0

state (10.10) characterized by a given integer value of n

0

(�=U). Only at

the degenerate point with �=U = integer, does a non-zero w immediately

lead to a state with 	

B

6= 0. We will consider the properties of this 	

B

6=

0 later, but now we discuss the properties of the lobes with 	

B

= 0 in

some more detail. In mean-�eld theory, these states have wavefunctions

still given exactly by (10.10). However, it is possible to go beyond mean

�eld theory, and make an important exact statement about each of the

lobes: the expectation value of the number of bosons in each site is given

by

D

^

b

y

i

^

b

i

E

= n

0

(�=U); (10.12)

which is the same result one would obtain from the product state (10.10)

(which, we emphasize, is not the exact wavefunction for w 6= 0). There
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are two important ingredients behind the result (10.12): the existence of

an energy gap and the fact that

^

N

b

commutes with H

B

. First, recall that

at w = 0, provided �=U was not exactly equal to a positive integer, there

was a unique ground state, and there was a non-zero energy separating

this state from all other states (this is the energy gap). As a result, when

we turn on a small non-zero w, the ground state will move adiabatically

without undergoing any level crossings with any other state. Now the

w = 0 state is an exact eigenstate of

^

N

b

with eigenvalue Mn

0

(�=U),

and the perturbation arising from a non-zero w commutes with

^

N

b

.

Consequently, the ground state will remain an eigenstate of

^

N

b

with

precisely the same eigenvalue, Mn

0

(�=U), even for small non-zero w.

Assuming translational invariance, we then immediately have the exact

result (10.12). Notice that this argument also shows that the energy gap

above the ground state will survive everywhere within the lobe. These

regions with a quantized value of the density and an energy gap to all

excitations are known as \Mott insulators." Their ground states are very

similar to, but not exactly equal to, the simple state (10.10): they involve

in addition terms with bosons undergoing virtual 
uctuations between

pairs of sites, creating `particle-hole' pairs. The Mott insulators are also

known as `incompressible' because their density does not change under

changes of the chemical potential � or other parameters in H

B

:

@h

^

N

b

i

@�

= 0: (10.13)

It is worth re-emphasizing here the remarkable nature of the exact

result (10.12). From the perspective of classical critical phenomena, it is

most unusual to �nd the expectation value of any observable to be pinned

at a quantized value over a �nite region of the phase diagram. However,

as we will see quantum �eld theories of a certain structure allow such a

phenomenon, and we will meet di�erent realizations of it in subsequent

chapters. The existence of observables like

^

N

b

which commute with the

Hamiltonian is clearly a crucial ingredient.

The numerical analysis shows that the boundary of the Mott Insulat-

ing phases is a second order quantum phase transition, i.e., a non-zero

	

B

turns on continuously. With the bene�t of this knowledge, we can

determine the positions of the phase boundaries. By the usual Landau

theory argument, we simply need to expand E

0

in (10.8) in powers of

	

B

,

E

0

= E

00

+ rj	

B

j

2

+O(j	

B

j

4

); (10.14)
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and the phase boundary appears when r changes sign. The value of r

can be computed from (10.8) and (10.7) by second-order perturbation

theory, and we �nd

r = �

0

(�=U) [1� Zw�

0

(�=U)] ; (10.15)

where

�

0

(�=U) =

n

0

(�=U) + 1

Un

0

(�=U)� �

+

n

0

(�=U)

�� U(n

0

(�=U)� 1)

: (10.16)

The function n

0

(�=U) in (10.11) is such that the denominators in (10.16)

are positive, except at the points at which boson occupation number

jumps at w = 0. The solution of the simple equation r = 0 leads to the

phase boundaries shown in Fig 10.1.

Finally, we turn to the phase with 	

B

6= 0. The mean-�eld parameter

	

B

varies continuously as the parameters are varied. As a result all

thermodynamic variables also change, and the density does not take a

quantized value; by a suitable choice of parameters, the average den-

sity can be varied smoothly across any real positive value. So this is a

compressible state in which

@h

^

N

b

i

@�

6= 0: (10.17)

As we noted earlier, the presence of a 	

B

6= 0 implies that the U(1)

symmetry is broken, and there is a non-zero sti�ness to twists in the

orientation of the order parameter. The 
uctuation analysis to be dis-

cussed in the following section can be combined with the methods of

Chapter 9 to show that this state is a super
uid, and the sti�ness is just

the super
uid density.

10.2 Continuum quantum �eld theories

We will discuss the low energy properties of the quantum phase transi-

tions between the Mott insulators and the super
uid. We will �nd that

it is crucial to distinguish between two di�erent cases, each characterized

by its own universality class and continuum quantum �eld theory. The

important diagnostic distinguishing the two possibilities will be the be-

havior of the boson density across the transition. In the Mott insulator,

this density is of course always pinned at some integer value. As one

undergoes the transition to the super
uid, depending upon the precise

location of the system in the phase diagram of Fig 10.1, there are two
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possible behaviors of the density: (A) the density remains pinned at its

quantized value in the super
uid in the vicinity of the quantum critical

point, or (B) the transition is accompanied by a change in the density.

We will show below that case (A) is described by the N = 2 case of

the quantum rotor �eld theory (3.11) which was studied in great detail

in Part 2 of this book: all universal results for �nite T crossovers can

be taken over and applied here. Case (B) will lead to a di�erent �eld

theory whose properties will be examined in the following chapter.

It is clear that the critical �eld theory should be expressed in terms

of a spacetime dependent �eld 	

B

(x; �) which is analogous to the mean

�eld parameter 	

B

appearing in Section 10.1. Such a �eld is most conve-

niently introduced by the well-known Hubbard-Stratanovich transforma-

tion. We begin by writing the partition function ofH

B

, Z

B

= Tre

�H

B

=T

,

in the standard imaginary-time coherent state path integral for canoni-

cal bosons (see the texts by Negele and Orland [360] and Shankar [456]

for a careful and complete derivation of this path integral):

Z

B

=

Z

Db

i

(�)Db

y

i

(�) exp

 

�

Z

1=T

0

d�L

b

!

L

b

=

X

i

�

b

y

i

db

i

d�

� �b

y

i

b

i

+ Ub

y

i

b

y

i

b

i

b

i

�

� w

X

hiji

�

b

y

i

b

j

+ b

y

j

b

i

�

(10.18)

We decouple the hopping term proportional to w by introducing an

auxiliary �eld 	

Bi

(�) and transforming Z

B

to

Z

B

=

Z

Db

i

(�)Db

y

i

(�)D	

Bi

(�)D	

y

Bi

(�) exp

 

�

Z

1=T

0

d�L

0

b

!

L

0

b

=

X

i

�

b

y

i

db

i

d�

� �b

y

i

b

i

+ Ub

y

i

b

y

i

b

i

b

i

�	

Bi

b

y

i

�	

�

Bi

b

i

�

+

X

i;j

	

�

Bi

w

�1

ij

	

Bi

: (10.19)

We have introduced the symmetric matrix w

ij

whose elements equal w if

i and j are nearest neighbors, and vanish otherwise. The equivalence be-

tween (10.19) and (10.18) (sometimes called the Hubbard-Stratanovich

transformation) can be easily established by simply carrying out the

Gaussian integral over 	

B

; this also generates some overall normaliza-

tion factors, but these have been absorbed into a de�nition of the mea-

sure D	

B

. Let us also note a subtlety we have glossed over: strictly

speaking, the transformation between (10.19) and (10.18) requires that
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all the eigenvalues of w

ij

be positive, for only then is the Gaussian inte-

grals over 	

B

well de�ned. This is not the case for, say, the hypercubic

lattice which has negative eigenvalues for w

ij

. This can be repaired by

adding a positive constant to all the diagonal elements of w

ij

, and sub-

tracting the same constant from the on-site b part of the Hamiltonian.

We will not explicitly do this here as our interest is only in the long-

wavelength modes of the 	

B

�eld, and the corresponding eigenvalues of

w

ij

are positive.

For our future purposes, it is useful to describe an important symme-

try property of (10.19). Notice that the functional integrand is invariant

under the following time-dependent U(1) gauge transformation:

b

i

! b

i

e

i�(�)

	

Bi

! 	

Bi

e

i�(�)

� ! �+ i

@�

@�

(10.20)

The chemical potential � becomes time-dependent above, and so this

transformation takes one out the of a physical parameter regime; nev-

ertheless (10.20) is very useful, as it places important restrictions on

subsequent manipulations of Z

B

.

The next step is to integrate out the b

i

, b

y

i

�elds from (10.19). This

can be done exactly in powers of 	

B

and 	

�

B

: the co-e�cients are simply

products of Green's functions of the b

i

. The latter can be determined

in closed form because the 	

B

-independent part of L

0

b

is simply a sum

of single-site Hamiltonian's for the b

i

: these were exactly diagonalized

in (10.10), and all single-site Green's functions can also be easily deter-

mined. We re-exponentiate the resulting series in powers of 	

B

, 	

�

B

,

and expand the terms in terms of spatial and temporal gradients of 	

B

.

The expression for Z

B

can now be written as [160]

Z

B

=

Z

D	

B

(x; �)D	

�

B

(x; �) exp

 

�

VF

0

T

�

Z

1=T

0

d�

Z

d

d

xL

B

!

L

B

= K

1

	

�

B

@	

B

@�

+K

2

�

�

�

�

@	

B

@�

�

�

�

�

2

+K

3

jr	

B

j

2

+erj	

B

j

2

+

u

2

j	

B

j

4

+ : : : (10.21)

Here V = Ma

d

is the total volume of the lattice, and a

d

is the volume

per site. The quantity F

0

is the free energy density of a system of

decoupled sites; its derivative with respect to the chemical potential
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gives the density of the Mott insulating state, and so

�

@F

0

@�

=

n

0

(�=U)

a

d

: (10.22)

The other parameters in (10.21) can also be expressed in terms of �, U

and w but we will not display explicit expressions for all of them. Most

important is the parameter er which can be seen to be

era

d

=

1

Zw

� �

0

(�=U); (10.23)

where �

0

was de�ned in (10.16). Notice that er is proportional to the

mean-�eld r in (10.15); in particular, er vanishes when r vanishes, and

the two quantities have the same sign. The mean �eld critical point

between the Mott Insulator and the super
uid appeared at r = 0, and

it is not surprising that the mean �eld critical point of the continuum

theory (10.21) is given by the same condition.

Of the other couplings in (10.21), K

1

, the coe�cient of the �rst-order

time derivative also plays a crucial role. It can be computed explicitly,

but it is simpler to note that the value of K

1

can be �xed by demanding

that (10.21) be invariant under (10.20) for small �: a simple calculation

shows that we must have

K

1

= �

@er

@�

: (10.24)

This relationship has a very interesting consequence: notice that K

1

vanishes when er is � independent; however, this is precisely the condition

that the Mott Insulator-super
uid phase boundary in Fig 10.1 have a

vertical tangent, i.e., at the tips of the Mott Insulating lobes. This

is signi�cant because at the value K

1

= 0 it is evident that (10.21)

is nothing but the N = 2 rotor model �eld theory action in (3.11),

which has been exhaustively studied in Part 2. So the Mott insulator

to super
uid transition is in the universality class of the O(2) quantum

rotor model phase transition for K

1

= 0. In contrast, for K

1

6= 0 we

have a rather di�erent �eld theory: we can now drop the K

2

term as

it involves two time derivatives and so is irrelevant with respect to the

single time derivative in the K

1

term. The resulting �eld theory will be

examined in some detail in the following chapter.

To conclude this discussion, we would like to correlate the above dis-

cussion on the distinction between the two universality classes with the

behavior of the boson density across the transition. This can be evalu-

ated by taking the derivative of the total free energy with respect to the
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chemical potential, as is clear from (10.4):

D

^

b

y

i

^

b

i

E

= �a

d

@F

0

@�

� a

d

@F

B

@�

= n

0

(�=U)� a

d

@F

B

@�

; (10.25)

where F

B

is the free energy resulting from the functional integral over

	

B

in (10.21). We will examine the properties of (10.21) for general

K

1

, and including 
uctuations, in the following chapter: here let us be

satis�ed by a simple mean �eld treatment.

In mean-�eld theory, for er > 0, we have 	

B

= 0, and thereforeF

B

= 0,

implying

D

^

b

y

i

^

b

i

E

= n

0

(�=U) for er > 0: (10.26)

This clearly places us in a Mott insulator: as argued in Section 10.1,

(10.26) is an exact result, and we will another veri�cation of this in our

analysis of the 
uctuations of (10.21) in Chapter 11.

For er < 0, we have 	

B

=

p

�er=u, as follows from a simple minimiza-

tion of L

B

; computing the resulting free energy we have

D

^

b

y

i

^

b

i

E

= n

0

(�=U) + a

d

@

@�

�

er

2

2u

�

� n

0

(�=U) +

a

d

er

u

@er

@�

(10.27)

In the second expression, we ignored the derivative of u as it is less sin-

gular as er approaches 0|we will comment on the consequences of this

shortly. So at the transition point at which K

1

= 0, by (10.24) we see

that the leading correction to the density of the super
uid phase van-

ishes, and it remains pinned at the same value as in the Mott insulator.

So as claimed earlier, the transition with no density change is in the

universality class of the O(2) quantum rotor model. Conversely, for the

case K

1

6= 0, the transition is always accompanied by a density change:

this is a separate universality class which will be considered in the next

chapter, and we will see there that we can also consider the density itself

as an order parameter for the transition in this case.

We close by commenting on the consequences of the omitted higher

order terms in (10.27) to the discussion above. Consider the trajectory

of points in the super
uid with their density equal to some integer n.

The implication of the above discussion is that this trajectory will meet

the Mott insulator with n

0

(�=U) = n at its lobe. The O(2) quantum
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rotor model phase transition then describes the transition out of the

Mott insulator into the super
uid along a direction which is tangent to

the trajectory of density n. The approximations made above merely

amounted to assuming that this trajectory was a straight line.

10.3 Applications and extensions

The 
uctuation corrections to the phase diagram in Fig 10.1 have been

considered in Refs [166, 167]: they �nd singularities in the shape of

the Mott lobes at the positions of the z = 1 transitions. Monte Carlo

simulations of the phase diagram have also been carried out [42, 365].

Experimental measurements of the phase diagram have been made in

systems such as

4

He on graphite [549], 
ux lines in superconductors with

arti�cial pinning centers [36, 46] and Josephson junction arrays [373].

Extensions of the boson Hubbard model with interactions beyond

nearest neighbor can spontaneously break translational symmetry at

certain densities. If this coexists with the super
uid order, one can ob-

tain a \supersolid" phase. These issues have been discussed in Refs [43,

168, 20, 355, 513, 514, 471, 182].
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Dilute Fermi and Bose gases

We will consider a number of di�erent models in this chapter, but they

share some important unifying characteristics. They all have a global

U(1) symmetry. We shall be particularly interested in the behavior of

the conserved density, generically denoted as Q, associated with this

symmetry. All the models will exhibit a quantum phase transition be-

tween two phases with the a speci�c T = 0 behavior in the expectation

value of Q. In one of the phases hQi is pinned precisely at a quantized

value, and does not vary as microscopic parameters are varied. This

quantization ends at the quantum critical point with a discontinuity in

the derivative of hQi with respect to the tuning parameter, and hQi

varies smoothly in the other phase; there is no discontinuity in the value

of hQi, however.

We have already met a transition of the above type in the previous

Chapter 10: the Mott insulator to super
uid transition at points exclud-

ing the tips of the lobes in Fig 10.1, where the couplingK

1

in (10.21) did

not vanish. In this case Q was just the boson density

^

b

y

i

^

b

i

=a

d

. We will

�nd it convenient to shift the de�nition of Q by a constant so that the

quantized value is zero: so, in this case, Q equals (

^

b

y

i

^

b

i

� n

0

(�=U))=a

d

.

In this chapter, we will study the universal properties of the contin-

uum theory of this transition, which following (10.21), we write in the

following form

Z

B

=

Z

D	

B

(x; �)D	

�

B

(x; �) exp

 

�

Z

1=T

0

d�

Z

d

d

xL

B

!

L

B

= 	

�

B

@	

B

@�

+

1

2m

jr	

B

j

2

� �j	

B

j

2

+

u

2

j	

B

j

4

: (11.1)

We have dropped the second order time derivative (proportional to K

2

)

from (10.21), and not included any non-linearity beyond the quartic, as

270
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these will all be shown to be irrelevant near the transition. We have

rescaled 	

B

by a factor of the square root of K

1

so that the �rst order

time derivative has co-e�cient unity: this sets the normalization of the

continuum �eld 	

B

which will always be consistently maintained in

this chapter. This time derivative term is the same as that arising in

the coherent state path integral for canonical bosons, where it is the

`Berry phase' associated with the adiabatic evolution of the coherent

states: the reader can learn about such path integrals in the book by

Negele and Orland [360], and about Berry phases and their relation to

coherent state path integrals in the text by Shankar [456] (physically, the

Berry phase term here accounts for the Josephson precession in the phase

of a condensate of the bosons in the presence of an external chemical

potential). So the normalization of 	

B

is determined by its Berry phase,

a feature we will see in other models. With the above rescaling of 	

B

it is easy to see from (10.24) and (10.21) that, close to the quantum

critical point, the co-e�cient of the j	

B

j

2

is the negative of the chemical

potential, �, up to an additive constant: we absorb this unimportant

additive constant into a rede�nition of �, and this leads to the j	

B

j

2

term shown in (11.1). We can also identify the charge Q with 	

�

B

	

B

as

hQi = �

@F

B

@�

= hj	

B

j

2

i; (11.2)

with F

B

= �(T=V ) lnZ

B

. With the form of the quadratic term in

(11.1), we also see from the mean �eld results in Chapter 10 that the

quantum critical point is precisely at � = 0 and T = 0: we will see in

this chapter that there are no 
uctuation corrections to this location

from the terms in L

B

(the K

2

term in (10.21) does lead to shifts in the

position of the quantum critical point, but we have already set it to zero

here as it is not important for the critical theory). So at T = 0, hQi

takes the quantized value hQi = 0 for � < 0, and hQi > 0 for � > 0;

we will particularly be interested in the nature of the onset at � = 0,

and �nite T crossovers in its vicinity. We have also assumed here that

K

1

> 0, and so, from (10.24) and (10.27), that hQi increases from its

quantized value away from the quantum critical point. The opposite

case of decreasing Q can be treated after a particle-hole transformation,

and has essentially identical properties.

While Z

B

in (11.1) shall be the main model of physical interest in this

chapter, we �nd it useful to introduce a closely related model which also

displays a quantum phase transition with the same behavior in a con-

served U(1) density hQi, and many similarities in its physical properties.
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The model is exactly solvable, and is expressed in terms of a continuum

canonical spinless fermion �eld 	

F

; its partition function is:

Z

F

=

Z

D	

F

(x; �)D	

�

F

(x; �) exp

 

�

Z

1=T

0

d�

Z

d

d

xL

F

!

L

F

= 	

�

F

@	

F

@�

+

1

2m

jr	

F

j

2

� �j	

F

j

2

: (11.3)

The functional integral is over 
uctuations of an anti-commuting Grass-

man �eld 	

F

(x; �) (see the discussion in Ref [360] for an introduction

to Grassman numbers and their functional integrals). Notice that the

terms in L

F

are in one-to-one correspondence with those in L

B

in (11.1),

except there is no quartic j	

F

j

4

term: such a term vanishes because the

square of a Grassman number is zero, which is just a mathematical rep-

resentation of the Pauli exclusion principle. As a result, L

F

is just a

free �eld theory. Like Z

B

, Z

F

has a quantum critical point at � = 0,

T = 0 and we will discuss its properties in this chapter; in particular, we

will show that all possible fermionic non-linearities are irrelevant near

it. The reader should not be misled by the apparently trivial nature of

the model in (11.3); using the theory of quantum phase transitions to

understand free fermions might seem like technological overkill. We will

see that Z

F

exhibits crossovers that are quite similar to those near far

more complicated quantum critical points, and observing them in this

simple context leads to considerable insight.

In general spatial dimension, d, the continuum theories Z

B

and Z

F

have di�erent, though closely related, universal properties. However, we

will argue here that the quantum critical points of these theories are

exactly equivalent in d = 1: this shall be one of the important results

of this chapter. We will see that the bosonic theory Z

B

is very strongly

coupled in d = 1, and present compelling evidence that the solvable

fermionic theory Z

F

is its exactly universal solution in the vicinity of

the � = 0, T = 0 quantum critical point. We shall also be able to make

a correspondence between the operators of the two theories, and this

will allow us to obtain certain exact results for experimentally measur-

able bosonic correlation functions of Z

B

, including some for the nonzero

temperature dynamical properties that are an important focus of this

book. Of course, all fermionic correlators of Z

F

are exactly known in

arbitrary d, but these do not have signi�cant practical interest.

We will begin in Section 11.1 by discussing a simple solvable model

in d = 1: the spin-1/2 quantum XX chain. This will allow us to mo-

tivate the physical origin of the fermionic theory Z

F

, and indicate the
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relationship between Z

B

and Z

F

in the context of a lattice model. Then

Section 11.2 will present a thorough discussion of the universal proper-

ties of Z

F

. This will be followed by an analysis of Z

B

in Section 11.3: we

will use renormalization group methods to obtain perturbative predic-

tions for universal properties. The perturbation theory for Z

B

becomes

strongly coupled in d = 1, but we will be able to obtain exact results for

this case by the d = 1 mapping between Z

B

and Z

F

: this will be dis-

cussed in Section 11.4. This section will also contain further discussion

of the properties of the XX chain of Section 11.1.

11.1 The quantum XX model

This model is obtained by taking the U !1 limit of the boson Hubbard

model H

B

in (10.4): this is then a model of `hard-core' bosons with an

in�nite on-site repulsion energy. The only states with a �nite energy are

those with n̂

bi

= 0 or 1 on every site of the lattice. The Mott insulating

states in Fig 10.1 with n

0

> 1, have therefore been expelled, and only

the two Mott insulators with n

0

= 0 or n

0

= 1 are permitted. Precisely

at w = 0, we have the n

0

= 1 Mott insulator for � > 0, while for � < 0

we have the n

0

= 0 Mott insulator, which is a fanciful term for the bare

vacuum with no particles.

This model of hard-core bosons can also be written as a magnet of

S = 1=2 spins with nearest neighbor exchange interactions. The idea is

to associate the two states on each site with the up and down states of

a S = 1=2 spin degree of freedom. In operator language, we can identify

�̂

x

j

=

^

b

j

+

^

b

y

j

�̂

y

j

= �i(

^

b

j

�

^

b

y

j

)

�̂

z

j

= 1� 2

^

b

y

j

^

b

j

: (11.4)

Then the boson commutation relations (10.1) and the hard-core restric-

tion imply that the �̂

x;y;z

j

obey the commutation relations of the Pauli

matrices, and satisfy �̂

�2

j

= 1 (no sum over �): we may therefore consider

them to be the Pauli matrices. With this mapping, the fully polarized

state with all spins up is the n

0

= 0 Mott insulator, while that with all

spins down is the n

0

= 1 Mott insulator. Inverting (11.4), we see that

the Hamiltonian H

B

in (10.4) becomes (up to an uninteresting additive

constant)

H

XX

= �

w

2

X

<ij>

�

�̂

x

i

�̂

x

j

+ �̂

y

i

�̂

y

j

�

+

�

2

X

i

�̂

z

i

(11.5)
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This is the so-called XX model which describes spin-1/2 degrees of free-

dom on the lattice sites with a nearest neighbor ferromagnetic exchange

w=2 > 0 con�ned to the x-y plane in spin space, and in a magnetic �eld

�=2 in the �z direction in spin space. We will argue later that additional

exchange in the z-direction in spin space (this corresponds to nearest-

neighbor interactions in the boson Hubbard model) will not modify the

universal properties of the Mott insulator to super
uid transitions. Note

also that both the simple fully-polarized n

0

= 0 and n

0

= 1 Mott insu-

lators are exact eigenstates of H

XX

for arbitrary w: for the n

0

= 1 state

this is a consequence of having sent U ! 1 which eliminates virtual

particle-hole pair 
uctuations.

Now we specialize to the one-dimensional case d = 1: in this case exact

expressions for the thermodynamic properties of H

XX

can be easily ob-

tained. The basic tool is the Jordan-Wigner transformation introduced

in Section 4.2 for the solution of the Ising chain in d = 1: this trans-

forms the spin-1/2 model into a model of spinless fermions. Inserting

(4.24,4.25) into (11.5), we get

H

XX

= �

X

i

�

w(c

y

i+1

c

i

+ c

y

i

c

i+1

) + �c

y

i

c

i

�

(11.6)

Notice that H

XX

is simply a free spinless fermion Hamiltonian and

its spectrum can therefore be easily determined: adding non on-site

interactions to the original H

B

would lead to fermion interactions in

H

XX

which will be shown to be irrelevant below. Fourier transforming

as in (4.31) we get the simple diagonal form

H

XX

=

X

k

"

k

c

y

k

c

k

(11.7)

with the free fermion dispersion "

k

= �2w cos(ka)��. So for � < �2w,

the energy of all the fermions is positive and the ground state has no

fermions present: this is clearly the Mott insulator with n

0

= 0; for

� > 2w all the fermions have negative energy and every fermion state

is occupied, leading to the Mott insulator with n

0

= 1. At intermediate

values of � there is partial occupation which can be easily computed at

T = 0:

h

^

b

y

i

^

b

i

i =

1

2

(1� h�̂

z

i

i) = hc

y

i

c

i

i =

8

<

:

0 � � �2w

1� (1=�) cos

�1

(�=2w) j�j � 2w

1 � � 2w

:

(11.8)

We show a plot of the boson number as a function of � in Fig 11.1.
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0

0.5

1

-3 -1 1 3/wµ

Fig. 11.1. Plot of the boson number per site as a function of the chemical

potential � for the U ! 1 limit of the boson Hubbard model H

B

in (10.4)

in dimension d = 1. There are Mott insulator to super
uid transitions at

� = �2w.

The state with intermediate occupation number has a non-zero super-


uid sti�ness, but only `quasi-long range order' in the super
uid order

parameter in d = 1, as will be discussed in Section 11.4: we will continue

to refer to it as a super
uid, however. So the result (11.8) displays two

super
uid-Mott insulator transitions: one at � = �2w and the other at

� = 2w. We will focus on the one at � = �2w, where the transition

is from a simple vacuum state with no particles (a Mott insulator with

n

0

= 0) to a low density super
uid.

For � close to 2w, the density of bosons is seen to vanish from (11.8) as

� (1 + �=2w)

1=2

. We may identify the power of 1=2 as an exact critical

exponent of the quantum critical point at � = �2w. Compare this

with the mean �eld result (10.27) which has the value 1 for this critical

exponent: we will see that the mean �eld result applies for d > 2.

We can derive a continuum theory for the quantum critical point at

� = �2w, T = 0 using an analysis very similar to that in Section 4.3.

The low energy fermionic states which are occupied across the transition

are near k = 0. Therefore we make take the continuum limit simply by

taking spatial gradients of the �elds. We de�ne the continuum �eld 	

F

as in (4.39), and expand H

XX

is spatial gradients: this leads to the
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Hamiltonian

H

F

=

Z

dx

�

�

1

2m

	

y

F

(x)r

2

	

F

(x)� �	

y

F

(x)	

F

(x)

�

(11.9)

where the fermion massm = 1=(2wa

2

). The coherent state path integral

of H

F

is, of course, the fermionic theory Z

F

(11.3).

We have thus presented evidence that the critical theory of the tran-

sition in the XX model in d = 1 is given by Z

F

: a complete demon-

stration requires that there are no further relevant perturbations that

can appear in H

F

: this will be taken up in the following section. Recall

also that H

XX

was derived from the boson Hubbard model (10.4) which

was shown to be related to Z

B

in (11.1) in Chapter 10. These mappings

therefore equate the universal critical properties of Z

B

, H

XX

and Z

F

in d = 1: these universal correlators will be described explicitly in the

subsequent sections.

For dimensions d > 1 the analysis of this section and the arguments of

Chapter 10 have established thatH

XX

has Mott insulator- super
uid (or

between fully polarized and partially polarized spin states) transitions

which are described by Z

B

. These models are, however, not equivalent

to Z

F

in this case.

11.2 The dilute spinless Fermi gas

This section will study the properties of Z

F

in the vicinity of its � = 0,

T = 0 quantum critical point. As Z

F

is a simple free �eld theory,

all results can be obtained exactly and are not particularly profound in

themselves. Our main purpose is to show how the results are interpreted

in a scaling perspective, and to obtain general lessons on the nature of

crossovers at T > 0. Some of the analysis will be quite similar to that for

a di�erent free fermion theory in Section 4.3, and so we can be relatively

brief.

First, let us review the basic nature of the quantum critical point at

T = 0. A useful diagnostic for this is the conserved density Q which in

the present model we identify as 	

y

F

	

F

. As a function of the tuning

parameter �, this quantity has a critical singularity at � = 0:

h	

y

F

	

F

i =

�

(S

d

=d)(2m�)

d=2

� > 0

0 � < 0

; (11.10)

where the phase space factor S

d

was de�ned below (8.16). In d = 1, this

result is clearly the universal continuum limit of (11.8).
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We now proceed to a scaling analysis. Notice that at the quantum

critical point � = 0, T = 0, the theory L

F

is invariant under the scaling

transformations closely related to those in (4.46)

x

0

= xe

�`

�

0

= �e

�z`

	

0

F

= 	

F

e

d`=2

(11.11)

provided we make the choice of the dynamic exponent

z = 2: (11.12)

The parameter m is assumed to remain invariant under the rescaling,

and its role is simply to ensure that the relative physical dimensions of

space and time are compatible: its role is rather analogous to that of

the velocity c in Section 4.3. The transformation (11.11) also identi�es

the scaling dimension

dim[	

F

] = d=2: (11.13)

Now turning on a non-zero �, it is easy to see that � is a relevant

perturbation with

dim[�] = 2: (11.14)

There will be no other relevant perturbations at this quantum critical

point: so by the de�nition of � above (4.50) we have

� = 1=2 (11.15)

We can now examine the consequences of adding interactions to L

F

.

A contact interaction like

R

dx(	

y

F

(x)	

F

(x))

2

vanishes because of the

fermion anti-commutation relation. (A contact interaction is however

permitted for a spin-1/2 Fermi gas and its coupling constant has scaling

dimension 2� d: this is relevant for d < 2 and its consequences can be

analyzed as done in Section 11.3 for the dilute Bose gas). The simplest

allowed term for the spinless Fermi gas is

L

1

= �

�

	

y

F

(x; �)r	

y

F

(x; �)	

F

(x; �)r	

F

(x; �)

�

(11.16)

where � is a coupling constant measuring the strength of the interaction.

However, a simple analysis shows that

dim[�] = �d: (11.17)

This is negative and so � is irrelevant, and can be neglected in the

computation of universal crossovers near the point � = T = 0. In
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particular, it will modify the result (11.10) only by contributions which

are higher order in �. The arguments show the sense in which the

fermionic theory L

F

is the universal critical theory describing the phase

transition in H

XX

in d = 1: additional exchange couplings in the z

direction, or further neighbor interactions, can only lead to terms like

that in (11.16), and all of these are irrelevant.

Turning to non-zero temperatures, we can write down scaling forms

by the same arguments that led to (4.56). Let us de�ne the fermion

Green's function

G

F

(x; t) =

D

	

F

(x; t)	

y

F

(0; 0)

E

; (11.18)

then the scaling dimensions above imply that it satis�es

G

F

(x; t) = (2mT )

d=2

�

G

F

�

(2mT )

1=2

x; T t;

�

T

�

(11.19)

where �

G

F

is a fully universal scaling function. For this particularly

simple theory L

F

we can of course obtain the result for G

F

in closed

form:

G

F

(x; t) =

Z

d

d

k

(2�)

d

e

ikx�i(k

2

=(2m)��)t

1 + e

�(k

2

=(2m)��)=T

; (11.20)

and it is easy to verify that this obeys the scaling form (11.19). Similarly

the free energy F

F

obeys the scaling dimension (4.54), and we have

F

F

= T

d=2+1

�

F

F

�

�

T

�

(11.21)

with �

F

F

a universal scaling function; the explicit result is, of course,

F

F

= �

Z

d

d

k

(2�)

d

ln(1 + e

(��k

2

=(2m))=T

); (11.22)

which clearly obeys (11.21). The crossover behavior of the fermion den-

sity

hQi = h	

y

F

	

F

i = �

@F

F

@�

(11.23)

follows by taking the appropriate derivative of the free energy. Exami-

nation of these results leads to the now familiar crossover phase diagram

of Fig 11.2. We will examine each of the regions of the phase diagram

in turn, beginning with the two low temperature regions.
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µ
0

T

0

Lattice high T

Continuum
high T

Fermi liquidDilute classical
gas

Fig. 11.2. Phase diagram of the dilute Fermi gas Z

F

(Eqn (11.3)) as a function

of the chemical potential � and the temperature T . The regions are separated

by crossovers denoted by dashed lines, and their physical properties are dis-

cussed in the text. The full lines are contours of equal density, with higher

densities above lower densities; the zero density line is � < 0, T = 0. The

line � > 0, T = 0 is a line of z = 1 critical points which controls the longest

scale properties of the low T Fermi liquid region. The critical end point � = 0,

T = 0, has z = 2 and controls global structure of the phase diagram. In d = 1,

the Fermi liquid is more appropriately labeled a Tomonaga-Luttinger liquid.

The hatched region marks the boundary of applicability of the continuum

theory and occurs at �; T � w.

11.2.1 Dilute classical gas, T � j�j, � < 0

The ground state for � < 0 is the vacuum with no particles. Turning on

a non-zero temperature produces particles with a small non-zero density

� e

�j�j=T

. The de Broglie wavelength of the particles is of order T

�1=2

which is signi�cantly smaller than the mean spacing between the parti-

cles which diverges as e

j�j=dT

as T ! 0. This implies that the particles

behave semiclassically. These properties are quite similar to those of

the low T region on the quantum paramagnetic side of the Ising chain

in Section 4.5.2. To leading order from (11.20), the fermion Green's

function is simply the Feynman propagator of a single particle

G

F

(x; t) =

�

m

2�it

�

d=2

exp

�

�

imx

2

2t

�

(11.24)
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and the exclusion of states from the other particles has only an expo-

nentially small e�ect. Notice that G

F

is independent of � and T and

(11.24) is the exact result for � = T = 0. The free energy, from (11.21)

and (11.22), is that of a classical Boltzmann gas

F

F

= �

�

mT

2�

�

d=2

e

�j�j=T

(11.25)

11.2.2 Fermi liquid, k

B

T � �, � > 0

The behavior in this regime is quite complex and rich. As we will see,

and as noted in Fig 11.2, the line � > 0, T = 0 is itself a line of quantum

critical points. The interplay between these critical points and those of

the � = 0, T = 0 critical end point is displayed quite instructively in the

exact results for G

F

and is worth examining in detail. It must be noted

that the scaling dimensions and critical exponents of these two sets of

critical points need not, and indeed will not, be the same. The concept

of a reduced scaling function, used earlier (e.g., in Section 4.5.1 for the

quantum Ising chain) to describe the emergence of e�ective classical

models, now comes in useful to obtain the critical behavior of the � > 0,

T = 0 critical line out of the global scaling functions of the � = 0,

T = 0 critical end point. Precisely the same structure is also present

in the physically measurable bosonic correlators of Z

B

in d = 1 (to be

discussed in Section 11.4) but there the results are far more complicated

and only available in restricted regimes. In the present case the closed

form results (11.20) and (11.22) contain all the structure, and so are

worth examining explicitly.

First it can be argued, e.g., by studying asymptotics of the integral

in (11.20), that for very short times or distances, the correlators do not

notice the consequences of other particles present because of a non-zero

T or �, and are therefore given by the single particle propagator, which

is the T = � = 0 result in (11.24). More precisely we have

G(x; t) is given by (11.24) for jxj � (2m�)

�1=2

jtj �

1

�

(11.26)

With increasing x or t, the restrictions in (11.26) are eventually violated

and the consequences of other particles due to a non-zero � become

apparent. Notice that as � is much larger than T , it is the �rst energy

scale to be noticed, and as a �rst approximation to understand the

behavior at larger x we may ignore the e�ects of T .

Let us therefore discuss the ground state for � > 0. It consists of a
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�lled Fermi sea of particles (a Fermi liquid) with momenta k < k

F

=

(2m�)

1=2

. An important property of the this state that it permits exci-

tations at arbitrarily low energies, i.e., it is gapless. These low energy

excitations correspond to changes in occupation number of fermions ar-

bitrarily close to k

F

. As a consequence of these gapless excitations, the

points � > 0 (T = 0) form a line of quantum critical points, as claimed

earlier. We will now derive the continuum �eld theory associated with

this line of critical points. We are interested here only in x and t which

violate the constraints in (11.26), and so in occupation of states with

momenta near �k

F

. So let us parameterize, in d = 1

	(x; �) = e

ik

F

x

	

R

(x; �) + e

�ik

F

x

	

L

(x; �) (11.27)

where 	

R;L

describe right and left moving fermions, and are �elds which

vary slowly on spatial scales � 1=k

F

= (1=2m�)

1=2

and temporal scales

� 1=�. A similar parameterization can be used for d > 1 but we will not

explicitly discuss it here; most of the results discussed below hold, with

small modi�cations, in all d (see Refs [457, 229, 286, 359] for more details

on a renormalization group analysis of fermions in d > 1). Inserting the

above parameterization in L

F

, and keeping only terms lowest order in

spatial gradients, we obtain the \e�ective" Lagrangean for the Fermi

liquid region, L

FL

in d = 1:

L

FL

= 	

y

R

�

@

@�

� iv

F

@

@x

�

	

R

+	

y

L

�

@

@�

+ iv

F

@

@x

�

	

L

(11.28)

where v

F

= k

F

=m = (2�=m)

1=2

is the Fermi velocity. The Lagrangean

L

FL

also describes a massless Dirac �eld in one spatial dimension, and

(like (4.44 for � = 0) is invariant under relativistic and conformal trans-

formations of spacetime: these facts shall be of some use to us later.

Now notice that L

FL

is invariant under a scaling transformation, which

is rather di�erent from (11.11) for the � = 0, T = 0 quantum critical

point:

x

0

= xe

�`

�

0

= �e

�`

	

0

R;L

(x

0

; �

0

) = 	

R;L

(x; �)e

`=2

v

0

F

= v

F

(11.29)

The above results imply

z = 1; (11.30)
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unlike z = 2 (Eqn (11.12)) at the � = 0 critical point, and

dim[	

R;L

] = 1=2 (11.31)

which actually holds for all d and therefore di�ers from (11.13). Further

notice that v

F

, and therefore �, are invariant under rescaling, unlike

(11.14) at the � = 0 critical point. Thus v

F

plays a role rather analogous

to that of m at the � = 0 critical point: it simply the physical units of

spatial and length scales. The transformations (11.29) show that L

LF

is scale invariant for each value of �, and we therefore have a line of

quantum critical points as claimed earlier. It should also be emphasized

that the scaling dimension of interactions like � will also change; in

particular not all interactions are irrelevant about the � 6= 0 critical

points. These new interactions are however small in magnitude provided

� is small, i.e., provided we are within the domain of validity of the global

scaling forms (11.19) and (11.21), and so we will neglect them here.

Their main consequence is to change the scaling dimension of certain

operators, but they preserve the relativistic and conformal invariance of

L

FL

: this more general theory of d = 1 fermions at low at is known as

a Tomonaga-Luttinger liquid, and we will discuss it in Chapter 14.

The action (11.28) and the scaling transformations (11.29) can be

considered as de�ning scaling forms on their on right, independent of

any derivation from the original L

F

. By complete analogy with the

arguments presented earlier, we may deduce that

G

R;L

(x; t) = h	

R;L

(x; t)	

y

R;L

(0; 0)i

=

�

T

v

F

�

�

R;L

�

Tx

v

F

; T t

�

(11.32)

where the powers of T follow from the scaling dimensions of G, x, and t,

the factors of v

F

, merely keep track of physical units, and �

R;L

are uni-

versal scaling functions. The result is a reduced scaling form of (11.19)

in the sense of the discussion in Section 4.5.1; the former has three ar-

guments, and in the limit �=T ! 1 it collapses into (11.32) which is

itself described the quantum critical theory (11.28).

Explicit expressions for G

R;L

can of course easily be obtained from the

de�nition (11.32) and the theory L

FL

in (11.28); however let us proceed

from an instructive derivation from the globally valid expression (11.20).

For jxj � (1=2m�)

1=2

, jtj � 1=�, and T � �, the integral in (11.20) is

dominated by contributions near the Fermi points k = �k

F

. So near k

F

let us parameterize k = k

F

+ p, expand terms in the integrand to linear

order in p, and to leading order let the integral extend over all real p;
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a similar procedure can be carried out near �k

F

. In this manner the

expression (11.20) for G

F

reduces to

G(x; �) = e

ik

F

x

Z

1

�1

dp

2�

e

p(ix�v

F

�)

1 + e

�v

F

p=T

+ e

�ik

F

x

Z

1

�1

dp

2�

e

p(�ix�v

F

�)

1 + e

�v

F

p=T

(11.33)

The integrals over p can be evaluated exactly and we obtain

G

F

(x; t) = e

ik

F

x

G

R

(x; t) + e

�ik

F

x

G

L

(x; t); (11.34)

with

G

R;L

(x; �) =

�

T

v

F

�

1

2 sin(�T (� � ix=v

F

))

(11.35)

This result is clearly consistent with the scaling form (11.32). For T >

0, the equal time G

R;L

decay exponentially with a correlation length

� = v

F

=�T , and the power of T is consistent with the z = 1 dynamic

exponent of L

FL

. At T = 0, these fermionic Green's functions take

the scale-invariant power law decay characteristic of the � > 0 critical

ground state

G

R;L

(x; �) =

1

2�v

F

(� � ix=v

F

)

; (11.36)

note that this is consistent with the scaling transformations (11.29).

Notice also that the T > 0 result (11.35) and the T = 0 result (11.36) of

L

FL

are related by the mapping (4.64) (with the replacement c ! v

F

)

asserted to be a general property of conformally invariant theories with

z = 1 in d = 1.

11.2.3 High T limit, T � j�j

This is the last, and in many ways the most interesting, region of

Fig 11.2. Now T is the most important energy scale controlling the

deviation from the � = 0, T = 0 quantum critical point, and the prop-

erties will therefore have some similarities to the continuum high T re-

gions discussed in Part 2. chain in Section 4.5.3. As always, it should

be emphasized that while the value of T is signi�cantly larger than j�j,

it cannot be so large that it exceeds the limits of applicability for the

continuum action L

F

: this implies that T � w.

We discuss �rst the behavior of the of the fermion density. In the

high T limit of the continuum theory L

F

, j�j � T � w we have from
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(11.22,11.23) the universal result

h	

y

F

	

F

i = (2mT )

d=2

Z

d

d

w

(2�)

d

1

e

w

2

+ 1

= (2mT )

d=2

�(d=2)

(1� 2

d=2

)

(4�)

d=2

(11.37)

This density implies an interparticle spacing which is of order the de

Broglie wavelength = (1=2mT )

1=2

: thermal and quantum e�ects are to

be equally important, and neither dominate, as we found in correspond-

ing regions in Chapters 4, 5, and 7.

For completeness, let us also consider the fermion density for T � w

(the region above the hatched marks in Fig 11.2), to illustrate the lim-

itations on the continuum description discussed above. Now the result

depends upon the details of the non-universal fermion dispersion; on a

hypercubic lattice with dispersion �

k

� �, we obtain

h	

y

F

	

F

i =

Z

�=a

��=a

d

d

k

(2�)

d

1

e

("

k

��)=T

+ 1

=

1

2a

d

�

1

4T

Z

�=a

��=a

d

d

k

(2�)

d

("

k

� �) +O(1=T

2

):(11.38)

The limits on the integration, which extend from ��=a to �=a for each

momentum component, had previously been sent to in�nity in the con-

tinuum limit a ! 0. In the presence of lattice cuto�, we are able to

make a naive expansion of the integrand in powers of 1=T , and the re-

sult therefore only contains negative integer powers of T . Contrast this

with the universal continuum result (11.37) where we had non-integer

powers of T dependent upon the scaling dimension of 	.

We return to the universal high T region, j�j � T � w, and describe

the behavior of the fermionic Green's function G

F

, given in (11.20). At

the shortest scales we again have the free quantum particle behavior of

the � = 0, T = 0 critical point

G

F

(x; t) is given by (11.24) for jxj � (2mT )

�1=2

jtj �

1

T

: (11.39)

Notice that the limits on x and t in (11.39) are di�erent from those in

(11.26), in that they are determined by T and not �. At larger jxj or t

the presence of the other thermally excited particles becomes apparent,

and G

F

crosses over to a novel behavior characteristic of the high T

region. We illustrate this by looking at the large x asymptotics of the
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equal time G in d = 1 (other d are quite similar)

G

F

(x; 0) =

Z

dk

2�

e

ikx

1 + e

�k

2

=2mT

(11.40)

For large x this can be evaluated by a contour integration which picks

up contributions from the poles at which the denominator vanishes in

the complex k plane. The dominant contributions come from the poles

closest to the real axis, and gives the leading result

G

F

(jxj ! 1; 0) = �

�

�

2

2mT

�

1=2

exp

�

�(1� i) (m�T )

1=2

x

�

(11.41)

Thermal e�ects therefore lead to an exponential decay of equal-time

correlations, with a correlation length � = (m�T )

�1=2

. Notice that

the T dependence is precisely that expected from the exponent z = 2

associated with the � = 0 quantum critical point and the general scaling

relation � � T

�1=z

. The additional oscillatory term in (11.41) is a

reminder that quantum e�ects are still present at the scale �, which is

clearly of order the de Broglie wavelength of the particles.

11.3 The dilute Bose gas

This section will study the universal properties quantum phase transition

of the dilute Bose gas model Z

B

in (11.1) in general dimensions. We

will begin with a simple scaling analysis which will show that d = 2 is

the upper critical dimension. The �rst subsection will analyze the case

d < 2 in some more detail, while the next subsection will consider the

somewhat di�erent properties in d = 3.

We begin with the analog of the simple scaling considerations pre-

sented at the beginning of Section 11.2. At the coupling u = 0, the

� = 0 quantum critical point of L

B

is invariant under the transforma-

tions (11.11), after the replacement 	

F

! 	

B

, and we have as before

z = 2 and

dim[	

B

] = d=2 ; dim[�] = 2; (11.42)

these results will shortly be seen to be exact in all d. We can easily

determine the scaling dimension of the quartic coupling u at the u =

0, � = 0 �xed point under the bosonic analog of the transformations

(11.11); we �nd

dim[u] = 2� d: (11.43)

Thus the free �eld �xed point is stable for d > 2, in which case it is
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+

+ +  ...

Fig. 11.3. The ladder series of diagrams which contribute the renormalization

of the coupling u in Z

B

for d < 2

suspected that a simple perturbative analysis of the consequences of u

will be adequate. However, for d < 2, a more carefully renormaliza-

tion group based resummation of the consequences of u is required, for

reasons similar to those presented in Section 8.1.1 for the case of the

quantum Ising/rotor models. This identi�es d = 2 as the upper-critical

dimension of the present quantum critical point.

Both here and in the models of Part 2 we have found that the condition

for being below the upper-critical dimension is d + z < 4; we will �nd

that the same condition also holds in the model of Chapter 12. This

common result arises because all of these critical points are described by

a bosonic �eld theory with a quartic non-linearity in which the quantum

time dimension scales as z spatial dimensions.

Our analysis of the case d < 2 for the dilute Bose gas quantum critical

point is very similar to that in Section 8.1.3. However, we will �nd, some-

what surprisingly, that all the �eld-theoretic renormalization constants,

and the associated 
ow equations can be determined exactly in closed

form. We begin by considering the one-loop renormalization of the quar-

tic coupling u at the � = 0, T = 0 quantum critical point: it turns out

that only the ladder series of Feynman diagrams shown in Fig 11.3 need

be considered (the T matrix). Evaluating the �rst term of the series in

Fig 11.3 for the case of zero external frequency and momenta, we obtain

the contribution

�u

2

Z

d!

2�

Z

d

d

k

(2�)

d

1

(�i! + k

2

=(2m))

1

(i! + k

2

=(2m))

= �u

2

Z

d

d

k

(2�)

d

m

k

2

(11.44)

(the remaining ladder diagrams are powers of (11.44) and form a simple
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geometric series). Notice the infra-red singularity for d < 2, which is

cured, as in Section 8.1.1, by moving away from the quantum critical

point, or by external momenta. The physical consequences of this singu-

larity can be determined by a �eld theoretic analysis very similar to that

in Section 8.1.3. As in (8.16), we introduce a momentum scale e� (the

tilde is to prevent confusion with the chemical potential), and express u

in terms of a dimensionless coupling u

R

by

u = u

R

(2m)e�

�

S

d

�

1 +

u

R

2�

�

: (11.45)

Here the prefactor of (2m) has been chosen to make u

R

dimensionless,

while

� = 2� d: (11.46)

The motivation behind the choice of the renormalization factor in (11.45)

is the same as that behind (8.16): the renormalized four-point coupling,

when expressed in terms of u

R

, and evaluated in d = 2 � �, is free

of poles in � as can easily be explicitly checked using (11.44) and the

associated geometric series. (Also recall that as in Chapter 8 no such

renormalization is necessary above the upper critical dimension (which

equals d = 2 in the present case), and we can work with bare coupling

u.) From the relationship (11.45) we can also derive the 
ow equation

for u

R

under the change e�! e�e

`

for �xed u (this is the analog of (8.17));

we obtain [151, 160]

du

R

d`

= �u

R

�

u

2

R

2

(11.47)

Note that for � > 0, there is a stable �xed point at

u

�

R

= 2� (11.48)

which will control all the universal properties of Z

B

.

We now state a very important and surprising feature of the above

results, which is not shared by the corresponding calculations in Chap-

ter 8. The renormalization (11.45), the 
ow equation (11.47), and the

�xed point value (11.48) are exact to all orders in u

R

or �, and it is not

necessary to consider u

R

dependent renormalizations to the �eld scale

of 	

B

or any of the other couplings in Z

B

. This result is ultimately a

consequence of a very simple fact: the ground state of Z

B

at the quan-

tum critical point � = 0 is simply the empty vacuum with no particles.

So any interactions which appear are entirely due to particles that have
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been created by the external �elds. In particular, if we introduce the

bosonic Greens function (the analog of (11.20))

G

B

(x; t) =

D

	

B

(x; t)	

y

B

(0; 0)

E

; (11.49)

then for � � 0 and T = 0, its Fourier transform G(k; !) is given exactly

by the free �eld expression

G

B

(k; !) =

1

�! + k

2

=(2m)� �

: (11.50)

The �eld 	

y

B

creates a particle which travels freely until its annihilation

at (x; t) by the �eld 	

B

: there are no other particles present at T = 0,

� � 0, and so the propagator is just the free �eld one. The simple

result (11.50) implies that the scaling dimensions in (11.42) are exact.

Now turning to the renormalization of u, it is clear from the diagram in

Fig 11.3 that we are considering the interactions of just two particles:

for these, the only non-zero diagrams are the one shown in Fig 11.3,

which involve repeated scattering of just these particles. Formally, it is

possible to write down many other diagrams which could contribute to

the renormalization of u: however all of these vanish upon performing

the integral over internal frequencies: there is always one integral which

can be closed in one half of the frequency plane where the integrand has

no poles. This absence of poles is of course just a more mathematical

way of stating that there are no other particles around.

We will consider application of these renormalization group results

separately for the cases below and above the upper critical dimension of

d = 2.

11.3.1 d < 2

The approach and analysis here is very similar to that carried out in

Chapter 8 below the upper critical dimension (d < 3) for the quantum

rotor/Ising models.

First, let us note some important general implications of the theory

controlled by the �xed point interaction (11.48). As we have already

noted, the scaling dimensions of 	

B

and � are given precisely by their

free �eld values in (11.42), and the dynamic exponent z also retains

the tree level value z = 2. All these scaling dimensions are identical

to those obtained for the case of the spinless Fermi gas in Section 11.2.

Further the presence of a non-zero and universal interaction strength

u

�

R

in (11.48) implies that the bosonic system is stable for the case
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� > 0 as the repulsive interactions will prevent the condensation of

in�nite density of bosons (no such interaction was necessary for the

fermion case, as the Pauli exclusion was already su�cient to stabilize

the system). These two facts imply that the formal scaling structure

of the bosonic �xed point being considered here is identical to that of

the fermionic one considered in Section 11.2, and that the scaling forms

of the two theories are identical. In particular, G

B

will obey a scaling

form identical to that for G

F

in (11.19) (with a corresponding scaling

function �

G

B

), while the free energy, and associated derivatives obey

(11.21) (with a scaling function �

F

B

). The universal functions �

G

B

and

�

F

B

can be determined order by order in the present � = 2�d expansion,

and this will be illustrated shortly.

Although the fermionic and bosonic �xed points share the same scaling

dimensions, they are distinct �xed points for general d < 2. However,

the arguments already presented in Section 11.1 suggest that these two

�xed points are identical precisely in d = 1 [439]. Further evidence for

this identity was presented in Ref [115]: there the anomalous dimension

of the composite operator 	

2

B

was computed exactly in the � expansion,

and was found to be identical to that of the corresponding fermionic

operator. Assuming the identity of the �xed points, we can then make

a stronger statement about the universal scaling function: those for the

free energy (and all its derivatives) are identical �

F

B

= �

F

F

in d = 1. In

particular, from (11.22) and (11.23) we conclude that the boson density

is given by

hQi = h	

y

B

	

B

i =

Z

dk

2�

1

e

(k

2

=(2m)��)=T

+ 1

(11.51)

in d = 1 only. The operators 	

B

and 	

F

are still distinct and so there

is no reason for the scaling functions of their correlators to be the same:

we will compute numerous exact properties of the scaling function �

G

B

for G

B

in the following Section 11.4. The crossover diagram of Fig 11.2

also applies to Z

B

in d = 1. The critical Fermi liquid state for � > 0,

T = 0 is expected to become a critical super
uid state: as we will show

in Section 11.4, the bosonic correlation functions decay with a power-law

in space implying `quasi-long-range' super
uid order at T = 0. However

correlations decay exponentially at any nonzero T implying the absence

of any �nite T phase transition: this is again consistent with the T > 0

behavior of Fig 11.2.

As not all observables can be computed exactly in d = 1 by the map-

ping to the free fermions, we will now consider the � = 2� d expansion.
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We will present a simple � expansion calculation [438] for illustrative pur-

poses. We focus on density of bosons at T = 0. Knowing that the free

energy obeys the analog of (11.21), we can conclude that a relationship

like (11.10) holds

h	

y

B

	

B

i =

�

C

d

(2m�)

d=2

� > 0

0 � < 0

(11.52)

at T = 0, with C

d

a universal number. The identity of the bosonic and

fermionic theories in d = 1 implies from (11.10) or from (11.51) that

C

1

= S

1

=1 = 1=�. We will show how to compute C

d

is the � expansion:

similar techniques can be used for almost any observable.

Even though the position of the �xed point is known exactly in (11.48),

not all observables can be computed exactly: they have contributions to

arbitrary order in u

R

. The basic recipe is as in Section 8.1.3: compute

any physical observable as a formal diagrammatic expansion in u, substi-

tute u in favor of u

R

using (11.45), and expand the resulting expression

in powers of �. All poles in � should cancel, but the resulting expression

will depend upon the arbitrary momentum scale e�. Finally, substitute

the �xed point value u

�

R

in (11.48): dependence upon e� disappears and

a universal answer remains. To compute the boson density for � > 0, we

anticipate that there is condensate of the boson �eld 	

B

: so we write

	

B

(x; �) = 	

0

+	

1

(x; t); ) (11.53)

where 	

1

has no zero wavevector and frequency component. Inserting

this into L

B

in (11.1), and expanding to second order in 	

1

we get

L

1

= ��j	

0

j

2

+

u

2

j	

0

j

4

�	

�

1

@	

1

@�

+

1

2m

jr	

1

j

2

��j	

1

j

2

+

u

2

�

4j	

0

j

2

j	

1

j

2

+	

2

0

	

�2

1

+	

�2

0

	

2

1

�

:(11.54)

This is a simple quadratic theory in the canonical Bose �eld 	

1

, and

its spectrum and ground state energy can be determined by the familiar

Bogoliubov transformation. Carrying out this step, we obtain the fol-

lowing formal expression for the free energy density F as a function of

the condensate 	

0

at T = 0

F(	

0

) = ��j	

0

j

2

+

u

2

j	

0

j

4

+

1

2

Z

d

d

k

(2�)

d

"(

�

k

2

2m

� �+ 2uj	

0

j

2

�

2

� u

2

j	

0

j

4

)

1=2
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�

�

k

2

2m

� �+ 2uj	

0

j

2

�

#

: (11.55)

To obtain the physical free energy density, we have to minimize F with

respect to variations in 	

0

and to substitute the result back into (11.55).

Finally we can take the derivative of the resulting expression with respect

to � and obtain required expression of for the boson density, correct to

the �rst two orders in u:

h	

y

B

	

B

i =

�

u

+

1

2

Z

d

d

k

(2�)

d

"

1�

k

2

p

k

2

(k

2

+ 4m�)

#

(11.56)

We evaluate this expression using the recipe speci�ed at the beginning

of this paragraph; at the �xed point u

R

= u

�

R

we get the universal

expression in the form (11.52) with

C

d

= S

d

�

1

2�

+

ln 2� 1

4

+O(�)

�

(11.57)

11.3.2 d = 3

Although we will only discuss the case d = 3 here, precisely the same

manipulations and results hold for all 2 < d < 4. The same methods can

also be used to compute the logarithmic corrections in d = 2, along the

lines of the discussion in Section 8.4; related results, obtained through

somewhat di�erent methods, are available in the literature [391, 392,

151, 439].

The quantum critical point at � = 0, T = 0 is above its upper critical

dimension, and we expect mean-�eld theory to apply. The analog of the

mean �eld result in the present context is the T = 0 relation for the

density

h	

y

B

	

B

i =

�

�=u+ : : : � > 0

0 � < 0

; (11.58)

where the ellipses represents terms which vanish faster as �! 0. Notice

that this expression for the density is not universally dependent upon

�: it depends upon the strength of the two-body interaction u (more

precisely, it can be related to the s-wave scattering length a by u =

4�a=m).

We turn to the crossovers and phase transitions at T > 0. These

are sketched in Fig 11.4. These crossovers were computed by Rasolt et

al. [399, 524], and also addressed in earlier work [464, 465, 108]; we shall
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T

0

C

0

Superfluid

µ

A

B

Dilute
Classical Gas

Fig. 11.4. Crossovers of the dilute Bose gas in d = 3 as a function of the

chemical potential � and the temperature T . The regimes labeled A, B, C are

described in the text. The full line is the �nite temperature phase transition

where the super
uid order disappears; the shaded region is where the classical

D = 3, N = 2 theory describes thermal 
uctuations. The contours of constant

density are similar to those in Fig 11.2 and are not displayed.

not follow their approach here, however. Instead, we shall show that

the results can be obtained by a direct application of the method used

in Section 8.2.2 to study the quantum rotor/Ising models above their

upper critical dimension.

The basic approach is one used several times in this book: integrate

out the modes with a nonzero Matsubara frequency to obtain an e�ective

action for the static, time-independent modes. In the present situation

it is clear that in the non-super
uid phase, the e�ective action will again

have the form of S

�;e�

in (8.23) for the caseN = 2 after the identi�cation

	(x) =

p

m(�

1

(x) + i�

2

(x)) (11.59)

of the static modes. The values of the couplings, R and U can be ob-

tained by a simple perturbation theory in u: from expressions analogous

to (8.24), (8.25) and (8.38) we obtain

R = �2m�+ 4mu

Z

d

3

k

(2�)

3

�

1

e

(k

2

=2m��)=T

� 1

�

2mT

k

2

� 2m�

+

2mT

k

2

�

(11.60)
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and

U = 12m

2

u: (11.61)

Armed with the knowledge of the values of R and U we can then proceed

precisely as in Section 8.2.2: we simply insert these values into the form

(8.26) involving the tricritical crossover function (the susceptibility � in

the present case is the boson Green's function G

B

de�ned in (11.49)),

and use the results for the tricritical crossovers in Section 8.1.2 for the

case N = 2. So a clear understanding of the functional form of R will

be useful, and we now discuss this.

Let us �rst rewrite R in the form analogous to (8.39)

R = �2m�+ 4mu(2mT )

3=2

K

�

�

T

�

(11.62)

where the universal function K(y) is given by (compare (8.28) and

(8.40))

K(y) =

1

2�

2

Z

1

0

k

2

dk

�

1

e

k

2

�y

� 1

�

1

k

2

� y

+

1

k

2

�

: (11.63)

Note that the result for R depends explicitly on the bare value of the

coupling u, as is expected for a system above its upper-critical dimension,

and as we also found in Section 8.2.2. A crucial property of K(y) (as

was the case for (8.28) and (8.40)) is that it is analytic as a function of y

at y = 0: this is clear from the fact that the only possibility singularity

of the integrand is the pole at k

2

= y, but its residue vanishes because

of cancellation between the �rst two terms in (11.63). We quote some

limiting forms for K(y) analogous to (8.30):

K(y) =

�

�(3=2)=(4�)

3=2

� 0:0327826y jyj � 1

p

jyj=(4�) + e

�jyj

=(4�)

3=2

y � �1

: (11.64)

We have not presented the limiting form for y = �=T � 1 as that will

not be needed: this limit puts the system within the super
uid phase

(see Fig 11.4) and the present results are only valid for the normal phase.

Inserting the above results into (8.26) and some straightforward anal-

ysis allows one to construct the phase diagram in Fig 11.4. We can

characterize the non-super
uid regions of Fig 11.4 by the behavior of

the zero frequency limit of the boson Green's function G

B

; following

(8.41) we parameterize this as

G

B

(k; i!

n

= 0) =

2m

k

2

+ �

�2

; (11.65)
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where � can be identi�ed as the correlation length of the super
uid order

parameter. An expression for � follows from (8.26) and (8.12) at N = 2:

�

�2

= R�

TU

p

R

6�

: (11.66)

As in Section 8.2 the condition for the boundary to the ordered super-


uid phase is simply R = 0: using (11.62-11.64) we therefore obtain, to

leading order in u, the critical temperature

T

c

=

2�

m

�

�

2u�(3=2)

�

2=3

(11.67)

which describes the phase boundary shown in Fig 11.4; notice that

�=T

c

� �

1=3

u

2=3

m � 1, and so the �=T

c

� 1 case of (11.64) was

not necessary. Before discussing the various normal state regimes in

Fig 11.4 however, we also obtain an expression for the free energy den-

sity, F ; the boson density then follows immediately from the identity

h	

y

B

	

B

i = �@F=@�. The free energy is computed by adding the con-

tribution of the !

n

6= 0 modes to that of the !

n

= 0 modes as described

by S

�;e�

in (8.23); we obtain

F = T

Z

d

3

k

(2�)

3

ln

�

1� e

�(k

2

=(2m)��)=T

�

+T

Z

�

0

d

3

k

(2�)

3

ln

�

k

2

+ �

�2

k

2

� 2m�

�

: (11.68)

The integral over the !

n

6= 0 terms yields the �rst logarithm and the

denominator in the argument of the second logarithm: notice that this

combination is well-de�ned even for � > 0, and the singularity at k

2

=

2m� is illusory; the expression (11.68) is analytic at � = 0, and can

be straightforwardly numerically evaluated in the present form both for

all real values of �. The integral over the �

�

modes in S

�;eff

gives the

numerator of the second logarithm. Notice also that the second integral

requires an large momentum cuto� �: the answer will depend partially

on the nature of this cuto�, but this is to be expected in a theory above

its upper critical dimension. The � dependence can be separated out

by subtracting a suitable 1=k

2

term from the second integral: we leave

this as a simple exercise for the reader. From the knowledge of F , and

therefore of the boson density h	

y

B

	

B

i, we can, in principle, convert

the �-T phase diagram in Fig 11.4 into a density-T phase diagram:

the constant density contours in Fig 11.4 have a shape quite similar to

those in Fig 11.2. However, the theoretical analysis, and the manner in
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which the present problem �ts into the general theory of crossovers near

quantum phase transitions is much more transparent in the �-T plane,

and this representation will continue to be the basis of our remaining

discussion. We turn to a separate description of the normal state regions

in turn (the discussion will parallel that below (8.41)).

(A) � < 0, T � j�j, Dilute classical gas:

We use the y � �1 limit of (11.64) in (11.62) and (11.66) to obtain

�

�2

= 2mj�j+

mu

2

�

2mT

�

�

3=2

e

�j�j=T

: (11.69)

So the correlation length is given by its T = 0 value and all T dependent

corrections are exponentially small. The density of bosons follows from

the � derivative of (11.68) and we obtain

h	

y

B

	

B

i =

�

mT

2�

�

3=2

e

�j�j=T

+ : : : (11.70)

The ellipses represent small corrections which depend upon the strength

of the weak interaction u, and we invite the reader to work them out from

(11.68). This density is very small, and as in Section 11.2.1, the spac-

ing between the particles is much larger than their thermal de Broglie

wavelength. We therefore expect an e�ective classical Boltzmann gas

description to apply. While (11.65) and (11.69) give an adequate de-

scription of the static correlations, dynamic properties require further

analysis following that presented in Chapters 7 and 9 for the quantum

rotor models.

(B) � < 0, j�j � T � (j�j=u)

2=3

=m:

As in (A), the correlation length is dominated by its T = 0 value of

(2mj�j)

�1=2

but the form of the T -dependent corrections is di�ers from

the exponentially small corrections in (A); we have instead, power law

corrections which follow from the jyj � 1 limit of (11.64) inserted in

(11.62) and (11.66):

�

�2

= 2mj�j+

mu

2

�

2mT

�

�

3=2

�(3=2): (11.71)

The density is no longer exponentially small, and (11.68) gives

h	

y

B

	

B

i =

�

mT

2�

�

3=2

�(3=2) + : : : ; (11.72)
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where again the ellipses represent u-dependent corrections which are

somewhat messy, but easy to compute from the expressions provided

above. For this density the spacing between the particles is of order

their thermal de Broglie wavelength, and in this respect this regime is

similar to the high T limit of the Fermi gas discussed in Section 11.2.3.

Of course, there are non-universal u-dependent corrections here, which

were absent for the Bose gas for d < 2 and for the spinless Fermi gas in

all d. Again, a description of dynamics in this region (B) requires the

extension of the computations on Chapters 7 and 9.

(C) T � (j�j=u)

2=3

=m, High T :

This is of course the true high T limit of the continuum theory Z

B

. Its

physical properties are similar to those of (B) but with some signi�cant

di�erences. The expression (11.71) for the correlation length still applies,

but it is clear that the second T -dependent term is the larger one. So

the correlation length � � T

�3=4

, which does not agree with the naive

scaling estimate � � T

�1=z

; as we discussed in Section 8.2.2, this is

because the interaction u is dangerously irrelevant, and its bare value

appears in high T limit of (11.71). The leading term in the density is

also as in (11.72), but the omitted u-dependent corrections have a rather

di�erent structure.

11.4 Correlators of Z

B

in d = 1

The study of the bosonic correlators of Z

B

is of some interest because

they can be measured directly in neutron scattering or NMR experi-

ments on spin systems which realize a quantum phase transition of the

type studied here. Explicit realizations include the XX chain of Sec-

tion 11.1 or gapped antiferromagnets in a strong �eld (to be discussed

in Chapter 13). In all of these cases, the bosonic �eld 	

B

has a simple,

local relationship to the spin operators (as in (11.4)), allowing its cor-

relators to be simply related to measurable quantities. In contrast, the

fermionic correlators of 	

F

(discussed in Section 11.2) have no physical

interpretation in such applications.

We have argued in Sections 11.1, 11.2 and 11.3.1 that the theories

Z

B

and Z

F

are equivalent for small �: the universal expression for the

boson density was given in (11.51). Here we will discuss how to map

the two theories at the operator level. For the case of the transition

from a Mott insulator with n

0

= 0, there are no background particles

to account for, and we can derive the theory Z

B

simply by the naive
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continuum limit of the lattice boson coherent state path integral (10.18):

such a procedure leads to the exact operator correspondence 	

B

=

^

b

i

=a.

We know from Section 11.1 that

^

b

i

= (�̂

x

i

+ i�̂

y

i

)=2, and further that

the Pauli matrices are related to the lattice fermion �eld by (4.25) and

thence to the continuum Fermi �eld 	

F

via (4.39). Combining these

transformations, and taking the naive continuum limit, we can obtain

the formal operator correspondence

	

B

(x; t) = exp

�

i�

Z

x

�1

dy	

y

F

(y; t)	

F

(y; t)

�

	

F

(x; t): (11.73)

So our task is, in principle, well de�ned: all correlators of 	

F

under

L

F

are known|use these to compute those of 	

B

using the mapping

(11.73). In practice, this evaluation cannot be carried out in the con-

tinuum as severe short distance divergences appear: we have to return

to the underlying lattice degrees of freedom, evaluate the expectation

values under the lattice Hamiltonian, and then return to the continuum

limit. A calculation such as this was discussed in Section 4.4 for equal

time correlators of the quantum Ising model. A very similar analysis

can also be performed for the present XX model: we refer the reader to

the literature for details [425] and present the main results.

We are interested here in the two-point bosonic correlation function

G

B

in (11.49). As discussed in Section 11.3.1, we know that this satis�es

a scaling form identical to (11.19), but the bosonic scaling function �

G

B

will be quite di�erent from �

G

F

. The large distance limit of the equal

time case can be obtained by the methods of Section 4.4. We use the

mapping

G

B

(x; 0) =

1

2a

h�̂

x

i

�̂

x

0

i (11.74)

where x = ia and the latter expectation value is evaluated under H

XX

at a temperature T . This can be performed using essentially the same

analysis as in Section 4.4, and we obtain for T > 0 that [425]

lim

jxj!1

G

B

(x; 0) =

�

mT

2

�

1=2

G

X

(�=T ) exp

�

�F

X

(�=T )(2mT )

1=2

jxj

�

(11.75)

where the universal crossover functions F

X

(y) and G

X

(y) are given by

F

X

(y) =

Z

1

0

ds

�

ln coth

js

2

� yj

2

+ �(�y)

p

�y; (11.76)
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Fig. 11.5. The universal scaling functions F

X

(y) for the inverse correlation

length and the amplitudeG

X

(y) (de�ned in (11.75)), as a function of y = �=T .

lnG

X

(y) = 2

Z

�1

�1

ds

"

�

dF

X

(s)

ds

�

2

+

1

4s

#

+ 2

Z

y

�1

ds

�

dF

X

(s)

ds

�

2

:

(11.77)

Notice the similarity of these results to (4.67) and (4.68) for the Ising

chain. As in the Ising case, both functions F

X

and G

X

are analytic

(despite appearances) for all real values of y, as must be the case due

to the absence of thermodynamic singularities at non-zero T : we show

a plot of these functions in Fig 11.5. These results for F

X

and G

X

have

also been obtained in Refs [301, 282, 244, 281] by the rather di�erent,

and far more sophisticated, quantum inverse scattering method.

Let us look at the physical implications of the above results for G

B

in

the di�erent regimes of Fig 11.2.

11.4.1 Dilute classical gas, T � j�j, � < 0

We need the y ! �1 limits of the F

X

, G

X

scaling functions. From

(11.76,11.77) we get F

X

(y ! �1) =

p

�y and G

X

(y ! �1) =
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1=

p

�y, and so have for the equal-time correlator

G

B

(x; 0) =

T

2

�

2m

j�j

�

1=2

exp

�

� (2mj�j)

1=2

jxj

�

as jxj ! 1: (11.78)

This equal time result has a very simple interpretation. It is precisely

the Fourier transform of TG

B

(k; !

n

= 0) with the G

B

given in (11.65),

the prefactor of T coming from the classical limit of the 
uctuation-

dissipation theorem as in (4.93), and we use the leading low temperature

value for � in (11.69) �

�2

= 2mj�j. Classical behavior is of course

expected, because, as in Section 11.2.1, the spacing between the particles

is much larger than their thermal de Broglie wavelength.

Long time correlators can be obtained by a simple physical argument

which relies on the similarity of this regime to the low T regime on the

paramagnetic side of the quantum Ising chain, discussed in Section 4.5.2.

In that case, and here, we have an exponentially dilute concentration of

particles, and are interested in the single-particle boson Green's func-

tion. Semiclassical arguments to compute these were advanced in Sec-

tion 4.5.2, and led to the main result in (4.105): its analog in the present

case is

G

B

(x; t) = G

F

(x; t)R(x; t): (11.79)

Here G

F

is the result given in (11.24) with d = 1 (this result is also the

Fourier transform of (11.50)), and is the Feynman propagator for a single

particle moving quantum mechanically from (0; 0) to (x; t). The factor

R represents the consequence of collisions with the exponentially dilute

background of thermally excited particles: as argued in Section 4.5.2,

G

B

picks up a (�1) from the S matrix of each collision, and the result

of averaging over such collisions leads to R(x; t) given in (4.86); the

only change here is in the dispersion spectrum of the particles "

k

=

k

2

=(2m) + j�j:

R(x; t) = exp

�

�

Z

dk

�

e

�"

k

=T

�

�

�

�

x�

d"

k

dk

t

�

�

�

�

�

: (11.80)

The explicit structure of the function R was described in Section 4.5.1:

equal time correlations decays exponentially in space with the length

�

c

, while equal space correlations decay exponentially in time with the

time �

'

(see (4.87)), and the general function obeys the scaling from

(4.90) with the scaling function given in (4.91). The only change is in

the speci�c values of the characteristic scales �

c

and �

'

which are given
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by

�

c

=

�

�

2mT

�

1=2

e

j�j=T

�

'

=

�

2T

e

j�j=T

(11.81)

Notice that both scales are exponentially large at low T .

The dynamic structure factor can be obtained by a Fourier transform

of (11.79), and its physical properties are very similar to those in Sec-

tion 4.5.2: there is a well de�ned quasi-particle pole at ! = "

k

, which is

broadened by collisions with other particles on the spatial and temporal

scales given in (11.81).

The results (11.79) and (11.80) have also been obtained in Refs [246,

281] by a more rigorous and much lengthier method. The precise agree-

ment gives us con�dence that the simple semiclassical arguments used

above are essentially exact.

11.4.2 Tomonaga-Luttinger liquid, T � �, � > 0

This is the region labeled a Fermi liquid in Fig 11.2: in d = 1 the generic

state with interaction among the fermions away from the critical point

is a Tomonaga-Luttinger liquid (as we will discuss in Chapter 14), and

we will use this more general and standard terminology.

In our discussion of the correlators of 	

F

this region in Section 11.2.2

we showed that the long-distance properties were described by a line of

z = 1 critical points at � > 0, T = 0, and that this manifested itself in a

collapse of the fermion scaling functions into a reduced scaling form. A

similar collapse must also occur for the G

B

correlator, and indeed for all

other observables. To describe this, we will need the scaling dimension

of 	

B

under the continuum critical theory of this line of critical points,

which was L

FL

in (11.28).

This dimension can be easily obtained from the equal time results

above. Using, from (11.76,11.77), F

X

(y ! 1) = �=4

p

y and G

X

(y !

1) = 1:042828 : : : we get for T � �

G

B

(x; 0) = G

X

(1)

�

mT

2

�

1=2

exp

�

�

�

2

T

v

F

jxj

�

as jxj ! 1 (11.82)

The prefactor � T

1=2

along with quantities invariant under the scaling

transformation (11.29), and the exponent z = 1, �xes

dim[	

B

] = 1=4 (11.83)
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along the � > 0 critical line; recall that dim[	

B

] = 1=2 at the � = 0

critical end point.

The results (11.82) and (11.83) are key, and allow us to deduce the

entire space and time dependence of G

B

in this regime using a simple

argument. The key point is that the long distance and time correlators

are controlled by the theory L

FL

which is conformally invariant. Then

we may use arguments essentially identical to those in Section 4.5.3

where we considered the high T limit of the quantum Ising chain. The

latter was controlled by the conformally invariant, z = 1, theory L

I

in (4.44) at � = 0. As we showed in Section 4.5.2, the T > 0 equal-

time long-distance decay in (4.111) allowed us to deduce the complete

spacetime dependent correlation function in (4.112) and also the exact

T = 0 correlator at the critical point in (4.108). Proceeding in precisely

the same manner here, we may conclude here that the T = 0 bosonic

correlator obeys for � > 0

G

B

(x; �) �

1

(x

2

+ v

2

F

�

2

)

1=4

; (11.84)

where the normalization constant will be �xed shortly. Indeed (11.84)

follows simply from (11.83) and the relativistic invariance of L

FL

. So

as announced earlier, the bosonic super
uid correlations decay with a

power-law in the � > 0 ground state. At �nite T , the analog of (4.112)

is

G

B

(x; �) =

�

mT

2

�

1=2

2

�1=2

G

X

(1)

[sin(�T (� + ix=v

F

)) sin(�(� � ix=v

F

))]

1=4

:

(11.85)

Notice that this result obeys the reduced scaling form characteristic of

the scaling dimensions of the theory L

FL

in (11.29):

G

B

(x; t) =

�

mT

2

�

1=2

�

X

�

Tx

v

F

; T t

�

(11.86)

From this expression we can also explicitly related the reduced scaling

function �

X

is related to the global scaling function �

G

B

(this is the

scaling function of G

B

de�ned as the bosonic analog of (11.19)) by the

�=T !1 of the latter:

�

X

(�x;

�

t) = lim

y!1

�

G

B

(2

p

y�x;

�

t; y); (11.87)

The physical properties of these dynamical correlations are essentially

identical in form to the dynamic responses discussed in Section 4.5.3,
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and particularly in Figs 4.8 and 4.9, and so need not be discussed here.

Correlations decay exponentially with a length � � v

F

=T and on a

phase coherence time �

'

� 1=T . Both these scales are those expected

in the `high T ' limit of a critical theory with z = 1: in the present case

this is the theory L

FL

characterizing the line of � > 0 critical points.

Remember, though, that the present region is a low T region of the

global theory L

B

.

11.4.3 High T limit, T � j�j

Now we have from (11.76,11.77)

G

B

(x; 0) = G

X

(0)

�

mT

2

�

1=2

exp

�

�F

X

(0) (2mT )

1=2

jxj

�

as jxj ! 1

(11.88)

where F

X

(0) = �(3=2)(1 � 1=

p

8)=

p

� = 0:952781471 : : : and G

X

(0) =

0:86757 : : : are pure numbers. All scales are set by T , and the correlation

length � T

�1=2

, as expected from the z = 2 value at the � = 0 critical

point. Notice also the similarity of this correlation length to that of the

fermionic correlator in (11.41); only the numerical factors are di�erent.

Asymptotics of dynamic correlation functions in this regime have been

obtained by Korepin et al. [281, 246] by the quantum inverse scattering

method. However, this is the one limiting regime where their approach

appears indispensable, and an alternative derivation using the simpler

physical arguments employed here does not exist; �nding such a deriva-

tion remains an important open problem. (Korepin et al. [281, 246] also

give the dynamic analogs of (11.75) containing the crossovers between

the di�erent �nite T regimes: the methods discussed here cannot give

these either). Their results are quite lengthy and will not be reproduced

here: we will just be satis�ed by noting that, as expected by scaling

arguments in the high T regime of a continuum theory, time-dependent

correlations decay exponential on a phase coherence time of order 1=T .

11.4.4 Summary

We summarize all of the structure in the dynamic correlations of Z

B

in Fig 11.6; notice the similarity (and some di�erences) from the corre-

sponding �gure for the Ising chain in Fig 4.13. First, in all the three

universal regions of Fig 11.2, the short time properties are essentially the

same: a free non-relativistic particle propagating quantum mechanically,
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Fermi liquid
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FERMI
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RELAXATION
       z=2 FREE PARTICLE

Fig. 11.6. Crossovers as a function of frequency for the boson model Z

B

(in

(11.1)) in d = 1 in the regimes of Fig 11.2; this model is equivalent to Z

F

(in

(11.3)) in d = 1.

without yet having felt the in
uence of any other particle. The interac-

tions with other particles appear at longer times, and their consequences

are rather di�erent in the various regimes.

In the low T regime for � < 0 (T � j�j), the concentration of other

particles is exponentially small, and so the decoherence and spectral

line broadening due to collisions is not felt until the very long time

�

'

� (1=T )e

j�j=T

.

In the opposing low T regime for � > 0 (T � �) the behavior is

rather di�erent. Now the particles are dense and degenerate, and at

times longer than 1=�, the Pauli exclusion principle leads to the quantum

coherence of a Fermi liquid ground state (more generally for large �, a

Tomonaga-Luttinger liquid, see Chapter 14). This state is described by

the separate z = 1 theory L

FL

in (11.28), and for a while the systems

appears to be in the ground state of L

FL

. However, eventually thermal

e�ects cause decoherence and relaxation at a time �

'

� 1=T and a length

scale � � 1=T . This last crossover is entirely a property of L

FL

and is

characterized by its z = 1 critical exponents.

Finally in the high T regime, we have a completely di�erent behavior.

Now the value of � is unimportant, and we may as well set � = 0.

The crossover from the free particle behavior to relaxational dynamics

happens at a time �

'

� 1=T and a length scale � � 1=

p

T , which are

characteristic of the z = 2 critical point at � = 0. The mean spacing
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between the particles is of order their de Broglie wavelength, and thermal

and quantum e�ects are equally important.

11.5 Applications and extensions

The dilute Fermi gas theory should describe the transition in an in-

teracting electron system (possibly described by a Hubbard-like model)

from a Mott insulator to a metal, driven by a variation in the chemical

potential. This transition has been studied numerically [28] but appears

to display a dynamic critical exponent of z � 4; it has been argued that

this is due to the presence of anomalously 
at bands in the particular

model studied, which leads to a � k

4

dispersion of the excitations above

the gap of the Mott insulator [236].

Experiments on the loss of super
uidity of

4

He adsorbed in aerogel

and Vycor [407, 110, 111] provide a realization of the dilute Bose gas the-

ory in the presence of a random external potential [160]. There are few

analytic results on this random problem, although some detailed numer-

ical studies have been undertaken [472, 523]; however, a reconciliation

between theory and experiments has not yet occurred. The experiments

have been carried out both in bulk (d = 3) and in �lms (d = 2).

Quantum antiferromagnets in the presence of an external magnetic

�eld provide some of the best experimental realizations of the dilute

Bose gas quantum critical point. We defer discussion of experiments

on this case until Chapter 13 where the connection will be explicitly

discussed.

Corrections to the T

c

of a dilute Bose gas in d = 3 beyond the result

(11.67) have been studied numerically [193] and by a renormalization

group method somewhat di�erent from our analysis here [53]. It would

be interesting to compare these results with those obtained here, after

accounting for the fact that the critical point is at a nonzero R

c

�

(TU)

1=2

(see the discussion below (8.26))|this has not yet been done.

Our discussion of crossovers in this chapter explicitly avoided the case

of d = 2, the upper critical dimension. This can be carried out as dis-

cussed in Section 8.4 for the upper critical dimension of the rotor/Ising

models. Results, obtained by somewhat di�erent methods, can be found

in Refs [391, 392, 151, 439].
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Phase transitions of Fermi liquids

We will take the low T Fermi liquid state of Section 11.2.2 in dimensions

d � 2 (or its spinful generalization), and examine the nature of its in-

stabilities to other ground states of a dense gas of fermions. Possibilities

include ferromagnets, states in which there is spin or charge density wave

order (to be de�ned more precisely below) or various types of supercon-

ductors. All of these cases are of considerable practical importance and

have numerous experimental applications.

A theoretical treatment of the quantum transition between a Fermi

liquid and a magnetically or charge ordered state was given in a paper

by Hertz [225], although many important points were anticipated in ear-

lier work [44, 351, 352, 396]. We shall present Hertz's basic arguments

in Section 12.1 for the case of a transition between a Fermi liquid and

a spin density wave state. We shall not treat the other cases here and

will, instead, refer the reader to the literature. There are a number of

reasons for this neglect:

(i) Many aspects of these transitions are not fully understood (we will

note some below), and are the subject of considerable debate in the

literature{it is therefore inappropriate to include them in this introduc-

tory treatment.

(ii) We shall only consider systems in spatial dimensions d � 2 here

(the d = 1 case requires a separate treatment appropriate to Tomonaga-

Luttinger liquids, and will be addressed in Chapter 14). For these di-

mensions, the quantum critical point is invariably at or above its upper

critical dimension. As a result, nonuniversal features abound, and the

details of the particular microscopic situation under consideration are

often important. A uni�ed treatment of all the cases is hardly possible,

and we choose, instead, to focus on a single representative case.

(iii) Details of the topology of the Fermi surface topology often matter,

305
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and this adds to the zoo of experimental possibilities. A single illus-

tration for a particular model is however adequate to make the basic

point.

We will consider the nature of the non-zero temperature crossovers

near the Fermi liquid-spin density wave quantum critical point in Sec-

tion 12.2. These were computed by Millis [341] who pointed out the

universal features and emphasized the basic similarities of the crossovers

to those in the dilute Bose gas; related results, not using the perspective

of quantum phase transitions, were also available in the earlier work of

Moriya [353, 351, 352, 214], Ramakrishnan [395, 396, 347] and others.

We have already studied the dilute Bose gas in Section 11.3.2 where we

also noticed the similarity to the quantum Ising/rotor models above their

upper critical dimension as treated in Section 8.2.2. Here we shall be

able to use the techniques developed in these earlier sections to rapidly

arrive at the needed generalization. The study of the �nite temperature

crossovers shall be restricted here to those above the Fermi liquid state

and in the high T regime; the crossovers at low T on the magnetically

ordered side are not understood, for reasons that will be discussed.

12.1 E�ective �eld theory

We begin by considering a simple model of interacting spin-1/2 fermions

which is expected to display a quantum phase transition to a spin density

wave state:

H

0

=

Z

d

d

k

(2�)

d

("

k

� �) c

y

~

ka

c

~

ka

+

1

2

Z

d

d

xd

d

x

0

J(x� x

0

)c

y

a

(x)~�

ab

c

b

(x) � c

y

a

0

(x

0

)~�

a

0

b

0

c

b

0

(x

0

) + : : : :(12.1)

Here c

y

a

is the creation operator of spin-1/2 fermion either at the position

x or the momentum k. The indices a; b; a

0

; b

0

represent the fermion spin

and can take the two values ", # which are implicitly summed over, and

the ~� are the Pauli matrices. The fermion dispersion "

k

is determined

by the underlying lattice, and � is the chemical potential. Ignoring

interactions, the ground state of H

0

would consist of momentum states

with "

k

< � occupied, while the remaining will be empty. The empty

and occupied states are separated by a (d�1)-dimensional Fermi surface.

We allow for a very general set of interactions between the fermions, but

have explicitly written down a non-local exchange interaction J(x� x

0

)

which favors a spin density wave state. Such a non-local exchange could
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perhaps be mediated by other localized electronic degrees of freedom not

included in H

0

.

For su�ciently weak interactions, the non-interacting Fermi liquid

ground state is expected to be stable, apart from innocuous changes

in the shape of the Fermi surface. However, for a suitable choice of

the exchange J , it is believed that the system will undergo a phase

transition to a spin density wave state. Such a state is characterized by

a spontaneous broken symmetry which allows for a non-zero expectation

value like

hc

y

a

(x)�

�

ab

c

b

(x)i = �

�

cos(

~

K � ~x) (12.2)

Here �

�

(� = 1; 2; 3) is a real, spin density wave order parameter, and

~

K 6= 0 is the spin density wave ordering wavevector. The ordering in

(12.2) clearly corresponds to a collinear polarization of the spins os-

cillating with wavevector

~

K. This is not the most general possibility:

non-collinear ordering is also possible, e.g., the spin polarization could

take the con�guration of a spiral. Such an ordering would require an

order parameter consisting of two vectors �

1�

, �

2�

; we will not consider

it here, although its properties are very similar to the collinear case.

Now imagine approaching a state with the ground state ordering (12.2)

from a Fermi liquid. The low energy excitations of the latter consist

primarily of 
uctuations in the occupation number of fermions just above

and below the Fermi surface. It should then not be surprising that

the value of the wavevector

~

K, relative to the geometry of the Fermi

surface, is of crucial importance. In particular, it matters whether

~

K

can connect pairs of points on the Fermi surface or not. Specifying two

arbitrary points in momentum space requires 2d real numbers, requiring

both lie on the Fermi surface imposes 2 conditions, and demanding they

are separated by

~

K imposes d additional conditions. So the space of

such points is at most d � 2 dimensional. In d = 2 these can therefore

be isolated pairs of points on the Fermi surface, while in d = 3 they

will form pairs of lines. Of course there could simply be no points on

the Fermi surface separated by

~

K: in this case low energy fermionic

excitations are not very important for the ordering transition, and the

critical properties are not very di�erent from the rotor model transitions

considered in Part 2{we will therefore not consider this case further

here. A separate, and non-generic case, is that the manifold of Fermi

surface points separated by

~

K has dimensionality greater than d � 2:

this situation is referred to as `nesting' and will also not be considered

here{`nesting' leads to some complexity which has been discussed in the
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literature [92, 18]. In passing, notice that in d = 1 if

~

K does connect

the Fermi `surface' points, the above de�nitions suggest that this case

is automatically `nested': thus, it is not surprising that the d = 1 case

requires a separate treatment.

The remainder of this chapter will consider the generic case when

~

K

connects a pair of d � 2 dimensional manifold of points on the Fermi

surface. We only need to focus on fermionic excitations in the vicinity

of these points. In d = 2 these are an isolated pair of points: we denote

them by

~

k

1

,

~

k

2

, with

~

k

1

�

~

k

2

=

~

K. Ignoring all fermions, but those in

the vicinity of

~

k

1

,

~

k

2

, we can write

c

a

(x) =  

1a

(x)e

i

~

k

1

�~x

+  

2a

(x)e

i

~

k

2

�~x

(12.3)

where  

1;2a

(x) are fermionic �elds which are slowly varying: they are

essentially constant on the spatial scale 1=j

~

Kj. This condition is neces-

sary to allow us to treat the  

1a

and  

2a

as independent excitations. A

closely related parameterization can be carried out in d = 3, but we will

refrain from explicitly writing it to avoid notational complexity: in this

case we will need the �elds  

1;2

(s; x

?

) where s is a label which moves

along the line on the Fermi surface, while x

?

is the spatial co-ordinate

in the plane orthogonal to the line. The remaining discussion in this

section will apply to both the cases d = 2; 3, although for simplicity, we

will write out some formulae only in d = 2.

On phenomenological grounds, we can write down the e�ective Hamil-

tonian which couples the order parameter �

�

to the fermion �elds  

1;2

in d = 2:

H

1

=

Z

d

2

k

(2�)

2

h

~v

1

�

~

k  

y

1a

(k) 

1a

(k) + ~v

2

�

~

k  

y

2a

(k) 

2a

(k)

i

+

Z

d

2

x

�

�

2

�

(x)

J

+

�

�

(x)

�

 

y

1a

(x)�

�

ab

 

2b

(x) +  

y

2a

(x)�

�

ab

 

1b

(x)

�i

:(12.4)

We have approximated the dispersion of the fermions by a linear mo-

mentum dependence in the vicinity of the Fermi surface: the fermion

energies vanish at

~

k = 0, because these points are on the Fermi sur-

face, a consequence of the parameterization (12.3). The vectors ~v

1;2

are

the Fermi velocities at the points

~

k

1;2

: ~v

1;2

=

~

r

k

"

k

�

�

�

~

k=

~

k

1;2

{ see Fig-

ure 12.1. The non-nesting condition requires that ~v

1;2

be non-collinear.

The �

2

�

term in H

1

can be viewed as a phenomenological representation

of the exchange interaction in H

0

, with the coupling J representing the
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v1

v2

K

Fig. 12.1. Sketch of a portion of the Fermi surface in d = 2, the two selected

points with Fermi velocities ~v

1

and ~v

2

; these points are separated by the

ordering wavevector

~

K.

strength of the exchange J(x � x

0

) at the wavevector

~

K: more literally

the terms under the x integral in (12.4) can be obtained by a Hubbard-

Stratanovich transformation like that used in Section 10.2 to proceed

from (10.18) to (10.19).

We proceed to derive an e�ective action for the order parameter �

�

alone. This requires us to integrate out the fermions  

1;2

from H

1

, a

potentially dangerous step as the �rst two fermionic terms in (12.4) al-

low excitations of arbitrarily small energy (in other words, the fermionic

excitations are gapless). Because of these low energy excitations, the

resulting terms in the action will have powers of �

�

multiplied by coef-

�cients which are non-local in time and space. It is, then, not a priori

clear whether it is permissible to truncate this action at any �nite order

in �

�

, or to approximate any of the terms by local interactions. For-

mally, however, we can integrate out the fermions exactly and obtain

the following e�ective action

S

0

=

Z

d

2

x

Z

1=T

0

d�

�

2

�

(x; �)

J

+Tr ln

 

@=@� + i~v

1

�

~

r

x

�

�

�

�

(x; �)

�

�

�

�

(x; �) @=@� + i~v

2

�

~

r

x

!

(12.5)
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The argument of the logarithm is an operator on the space of functions

of space and time which are antiperiodic in � with period 1=T|see

Ref [360] for a discussion on the de�nition of such operators. We need

to evaluate the Tr ln of such an operator for arbitrary �

�

(x; �): clearly

an intractable task required just to obtain the e�ective action, which

must subsequently be integrated over

~

�. However, in the vicinity of

the quantum critical point, we expect that �

�

will be small and slowly

varying, suggesting an expansion in powers and gradients of �

�

. This

was the strategy followed by Hertz. However before proceeding along

this route, we note an important caveat in the following paragraph.

The naive approach is to simply expand the functional determinant

in (12.5) in powers of the order parameter �

�

(k; !

n

) and also in pow-

ers of the wavevectors k and !

n

: such an expansion can, in principle,

be carried out to an arbitrarily high order. Given this formal expan-

sion, it is then tempting to believe that the resultant e�ective action

gives an adequate description of the physics everywhere in the phase

diagram. In particular, we could attempt to describe the ordered phase

by parameterizing

�

�

(k; !

n

) = N

0

+ �

1�

(k; i!

n

); (12.6)

where N

0

is the static polarization of the spin density wave state: we

determine N

0

by minimizing the action obtained by expanding in �

�

,

and then obtain the �nal e�ective action for the 
uctuations �

1�

about

the ordered state. However this procedure is incorrect. The reason,

simply stated, is that the limits N

0

! 0 and k; !

n

! 0 in S

0

do not

commute. In the procedure just outlined, we have �rst taken N

0

! 0,

then expanded in powers of k, !

n

, and then attempted to impose a

nonzero N

0

. In reality, we should maintain a non-zero N

0

throughout.

Doing this has a very important consequence. For N

0

6= 0, the fermion

spectrum of the functional determinant in S

0

undergoes a canonical

quantum mechanical band splitting into

~

k � (~v

1

+ ~v

2

)

2

�

2

4

 

~

k � (~v

1

� ~v

2

)

2

!

2

+N

2

0

3

5

1=2

(12.7)

For su�ciently small

~

k this implies that there is a gap in fermion spec-

trum: a portion of the Fermi surface in the vicinity of

~

k

1;2

disappears.

This gap will however not appear in the expansion of S

0

in powers of

�

�

, truncated at any �nite order. So any such expansion cannot be ap-

plied on the ordered side of the transition and it is necessary to return
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Fig. 12.2. Feynman diagram for the vertex of order �

2

�

generated from the

coupling between �

�

and the fermion bilinears in (12.4). The full lines are

fermion propagators and the wavy lines are the external �

�

sources.

to the complete expression in (12.5) [432]. The spectrum in (12.7) is

also closely related to the `pseudo-gap' phenomenon in the high tem-

perature superconductors, and its consequences are an active topic of

current research [93, 95].

We return to the route followed by Hertz [225], keeping in mind the

caution above about its inapplicability on the ordered side. Expanding

the functional determinant in S

0

, we focus �rst on the term quadratic in

�

�

, represented by the Feynman diagram in Fig 12.2: we parameterize it

as ��

0

(k; i!

n

)j�

�

(k; !

n

)j

2

, and obtain for �

0

the familiar Lindhard-like

susceptibility

�

0

(k; !

n

) = �T

X

�

n

Z

d

2

p

(2�)

2

1

(�i(!

n

+ �

n

) + ~v

1

� (

~

k + ~p))

1

(�i�

n

+ ~v

2

� ~p)

= �

Z

d

2

p

(2�)

2

f(~v

1

� (

~

k + ~p))� f(~v

2

� ~p)

i!

n

+ ~v

1

� (

~

k + ~p)� ~v

2

� ~p

= �

0

(0; 0)� c

1

j!

n

j � c

2

k

2

+ : : : : (12.8)

The two factors on the right hand side of the �rst equation represent the

fermion propagators of the lines in Fig 12.2, f(") � 1=(e

"=T

+ 1) is the

Fermi function, �

n

is an odd Matsubara frequency that is summed over,

while the frequency, !

n

, carried by the order parameter �

�

is even, and

c

1

and c

2

are some constants. The most important term above is the j!

n

j

in the expansion of �

0

at small frequency: as we will see, it represents

the damping of order parameter 
uctuations due to the coupling to the

gapless fermionic excitations in the vicinity of the points

~

k

1

,

~

k

2

on the

Fermi surface connected by the ordering wavevector

~

K. Its origin is a

little easier to see in real frequencies where the corresponding expression

in �

0

(k; !) = : : :+ ic

1

! + : : :. So, let us examine the imaginary part of
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�

0

(0; !), which from (12.8) is

Im [�

0

(0; !)] = �

Z

d

2

p

(2�)

2

[f(~v

1

� ~p)� f(~v

2

� ~p)] � (! + ~p � (~v

1

� ~v

2

))

=

!

4�j~v

1

� ~v

2

j

; (12.9)

and tell us that there is a linear in energy density of states of particle-hole

excitations which couple to �

�

.

Inserting the result (12.8) into (12.5), and rescaling �

�

, we �nally

obtain Hertz's e�ective action for the Fermi liquid to spin density wave

transition:

S

H

=

Z

d

d

k

(2�)

d

T

X

!

n

1

2

�

k

2

+ 
j!

n

j+ r

�

j�

�

(k; !

n

)j

2

+

u

4!

Z

d

d

xd�

�

�

2

�

(x; �)

�

2

(12.10)

We have added a quartic term obtained from the expansion of the func-

tional determinant, and its k and !

n

dependence has been neglected; this

is generated from a fermion loop like in Fig 12.2, but with four external

�

�

vertices. Phenomenological couplings 
 and r have been introduced:


 represents the damping computed in (12.9) while r is the tuning pa-

rameter which will take the system from the Fermi liquid (r > 0 in the

usual mean �eld theory of S

H

) to the spin density wave (r < 0). As

we have already noted, this action is not to be taken seriously at r < 0,

T = 0 as it does not capture the gap structure on the Fermi surface due

to the dispersion (12.7). We will however still be able to use S

H

in the

portion of the r < 0, T > 0 phase diagram which is not too close to

the region with spin density wave order. Also notice that S

H

is written

for general d dimension: a derivation very similar to the one above also

works for d = 3. The �eld �

�

will henceforth be allowed to have an

arbitrary number of components N ; the discussion above was for the

case N = 3, but other types of ordering lead to di�erent values of N ,

e.g., charge density wave order corresponds to N = 1.

The study of S

H

will occupy the remainder of this chapter. It is

useful to compare S

H

with S

�

in (3.11) or (8.2), which was studied in

Part 2. The only di�erence is that the !

2

n

frequency dependence in

the quadratic term in the latter has been replaced by the j!

n

j term in

S

H

. Also comparing with the dilute Bose gas in (11.1), we see a �i!

n

frequency dependence in the quadratic term of the boson action. The
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j!

n

j term in the present case changes the nature of the critical quantum

and thermal 
uctuations, as will be shown in the following section.

12.2 Finite temperature crossovers

Let us �rst consider some basic scaling results like the value of the upper

critical dimension and the scaling dimension of the various coupling. As

we just noted, the only di�erence between S

H

and the dilute Bose gas

model analyzed in Section 11.3 is that S

H

contains a j!

n

j frequency

dependence in the quadratic term, while the Bose gas had �i!

n

. Such a

change, however, has essentially no e�ect on the initial scaling analysis

of the u = 0 theory: the scaling dimension of the frequency dependence

is the same in both cases. Therefore, we may immediately borrow some

results from Section 11.3: the u = 0 theory has dynamic exponent z = 2,

and the results (11.42) and (11.43) generalize to

dim[�

�

] = d=2

dim[r] = 2

dim[u] = 2� d (12.11)

The last result again identi�es d = 2 as the upper-critical dimension.

So above d > 2 we can compute physical properties in a perturbation

series in u, and the �nal results will depend upon the microscopic, non-

universal value of u. Our discussion below, like that in Section 11.3.2,

will be restricted to the cases 2 < d < 4. We will brie
y comment on

the case d = 2 later.

The computation of the T > 0 crossovers is essentially identical to that

in Section 11.3.2: it leads to the phase diagram shown in Fig 12.3 [341]

which is very similar to Fig 11.4. We integrate out the !

n

6= 0 modes

and obtain an e�ective action for the static modes which takes the form

S

�;e�

in (8.23), and is characterized by the couplings R and U . To

leading order in u we have U = u, while for R we have (analogous to

(8.24), (8.25) and (11.60)):

R = r + u

�

N + 2

6

�

Z

d

d

k

(2�)

d

0

@

T

X

!

n

6=0

1


j!

n

j+ k

2

+ r

+

T

k

2

�

Z

d!

2�

1


j!j+ k

2

�

(12.12)

The next step is the mathematical one of evaluating the frequency and
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T

0
0

SPIN DENSITY
WAVE

r

FERMI
LIQUID

NON-FERMI
   LIQUID

A

B

C

Fig. 12.3. Phase diagram of a Fermi liquid undergoing an instability to a spin

density wave state for 2 � d < 4. The regimes A, B, C and their crossover

boundaries are described in the text. Compare to Fig 11.4 for the dilute Bose

gas.

momentum sums and integrals in (12.12). The main subtlety, like in

(8.38), is that while the result does depend upon a large momentum

cuto� �, the divergent momentum integral can be separated out into a

T -independent term. The remaining momentum integrals are convergent

in the ultraviolet, and we can safely set � ! 1 in them at the cost

of ignoring some uninteresting and non-critical dependence on T . We

show a few intermediate steps on how this separation is performed. The

basic idea, as discussed below (5.66), is to subtract from each frequency

summation the frequency integral of precisely the same quantity. In this

manner we manipulate R into the form

R = r + u

�

N + 2

6

�

[R

1

+R

2

+R

3

] (12.13)

with

R

1

=

Z

d

d

k

(2�)

d

 

T

X

!

n

1


j!

n

j+ k

2

+ r

�

Z

d!

2�

1


j!j+ k

2

+ r

!

R

2

= �T

Z

d

d

k

(2�)

d

�

1

k

2

+ r

�

1

k

2

�
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R

3

=

Z

�

d

d

k

(2�)

d

Z

d!

2�

�

1


j!j+ k

2

+ r

�

1


j!j+ k

2

�

(12.14)

It is easy to check that R

1

and R

2

are convergent at large momenta, and

all of the cuto� dependence has been isolated in the T -independent term

R

3

. As discussed below (8.38), we can remove this cuto� dependence by

adding and subtracting r=(
j!j+k

2

)

2

to the integrand in R

3

: this yields

a cuto� dependence term � r�

d�2

. Notice that this cuto� dependence

is a smooth linear function of r and so does not e�ect the remaining

universal singular part. After evaluating the terms in (12.14), the �nal

result for R can be written in the scaling form analogous to (8.39) and

(11.62)

R = r(1� c

2

u�

d�2

) +

u




(
T )

d=2

�

N + 2

6

�

L

�

r


T

�

(12.15)

where the universal scaling function L(y) is given by

L(y) =

1

�

Z

d

d

k

(2�)

d

�

ln

�

k

2

2�

�

�  

�

1 +

k

2

+ y

2�

�

+

� + y

k

2

�

; (12.16)

where  is the digamma function. We point out the now familiar prop-

erty of all such crossover functions: it is analytic at y = r=
T = 0

re
ecting the absence of any thermodynamic singularity at r = 0, T > 0

(see Fig 12.3). From (12.16) it is easily seen that L(y) is analytic for

y > �2�; the singularity at y = �2� is of no physical consequence as it

is within the ordered phase.

Knowing the values of R and U , we can work out the predictions for

physical observables. The expression for the order parameter correla-

tions, correct for small u, is (compare (8.41) and (11.65)) is

hj�

�

(k; !)j

2

i =

1

�i! + k

2

+ �

�2

(12.17)

where from (8.26) and (8.12) we have (compare (11.66))

�

�2

= R� Tu

�

N + 2

6

�

2�((4� d)=2)

(d� 2)(4�)

d=2

R

(d�2)=2

: (12.18)

As in (11.68) we can compute the free energy density, and obtain

F(T; r) =

TN

2

Z

d

d

k

(2�)

d

"

X

!

n

ln(
j!

n

j+ k

2

+ r) + ln

�

k

2

+ �

�2

k

2

+ r

�

#

;

(12.19)

where the numerator of the second logarithm is the contribution of the

!

n

= 0 modes, while the remainder come from the !

n

6= 0 modes. Notice
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that for T > 0, the expression (12.19) has no singularity at r = 0:

this is as expected from the absence of a thermodynamic singularity

in the middle of region C in Fig 12.3. It is advantageous to subtract

out the free energy of the system at the critical point r = 0, T = 0

from the above (this was simply 0 for the dilute Bose gas) and evaluate

�F � F(T; r)�F(0; 0); for this we get

�F =

TN

2

Z

�

d

d

k

(2�)

d

"

�

2

�

Z

1

0

d


(e


=T

� 1)

tan

�1
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2

+ r

�

+
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2

ln(k

2

)� (k

2

+ r) ln(k

2

+ r)
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+ ln

�

k

2

+ �

�2

k

2

+ r

�

#

+ : : : ;(12.20)

where we have omitted background terms which are T -independent and

only depend upon positive integer powers of r. The momentum integral

has a remaining cut-o� dependence which cannot be removed and does

e�ect the singular T and r dependence: this is a consequence of being

above the upper critical dimension.

We will discuss the implications of the above results for the order

parameter susceptibility; thermodynamic properties follow from results

like (12.20) and more explicit results are available in the literature [551,

432, 240]. In the low T `Fermi liquid' region A in Fig 12.3, de�ned by

T � r=
, the susceptibility is given by (12.17); by evaluating the large

y limit of (12.16) and inserting in (12.15) and (12.18) we get for the T

dependence of the correlation length

�

�2

(T ) = �

�2

(T = 0) +

u


r

(4�d)=2

(N + 2)�((4� d)=2)

36(4�)

d=2

T

2

: (12.21)

Notice the characteristic T

2

dependence of a Fermi liquid. Conversely,

in the high T limit, T � r=
, we take the y ! 0 limit of (12.16) and

obtain the leading result

�

�2

(T ) = r + (
T )

d=2

(N + 2)u

6


L(0) (12.22)

where L(0) is a number. In region B of Fig 12.3, r � 
T � (
r=u)

2=d

,

the �rst term in (12.22) dominates, while in region C, 
T � (
jrj=u)

2=d

,

the second T -dependent term is larger. So in the high T region C we

have � � T

�3=4

, which does not agree with the naive scaling estimate

� � T

�1=z

. As we noted in Sections 8.2.2 and 11.3.2, this violation

appears because of the presence of a dangerously irrelevant coupling u.

Note also that if we insert (12.22) into (12.17), the resulting dynamic
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response function does not scale as a function of !=T , and this is again

because the present system is above its upper-critical dimension.

As noted earlier, the results above are analytic at r = 0 for T > 0,

and so apply also for r < 0. For this case the correlation length diverges

at a critical value of r, and this determines the position of the phase

boundary in Fig 12.3 at T = T

c

(r), where to leading order in u

T

c

(r) =

1




�

�

6
r

(N + 2)u

�

2=d

: (12.23)

Finally, the case of the system being in its upper-critical dimension,

d = 2, is extremely similar to the corresponding case, d = 3, for the

rotor/Isingmodels of Part 2. The renormalization group equations imply

that the non-linearity u becomes logarithmically small as in (8.57); the

physical properties can then be computed by precisely the same method

discussed here, in a two-step integration of the non-zero frequency and

then the zero frequency modes, both carried out in an expansion in

powers of the e�ective u in (8.57).

12.3 Applications and extensions

Important applications of the spin density wave to Fermi liquid tran-

sition appear in the study of the heavy fermion compounds [23, 341,

504, 103, 104]. A case that has been intensively studied recently is

CeCu

6�x

Au

x

[415, 479, 517, 447], and there is also related work on

CeCu

6�x

Ag

x

[226]. The Cambridge group [257, 307, 192, 328] has ex-

amined a di�erent series of Ce compounds (CeNi

2

Ge

2

, CePd

2

Si

2

and

CeIn

3

) and these show similar transitions under pressure, but at stoi-

chiometric compositions at which disorder is quite small; recently [328],

they have reported the existence of superconductivity near the antiferro-

magnet/Fermi liquid quantum critical point. A comprehensive study of

quantum transitions involving loss of antiferromagnetic order in metal-

lic and insulating phases of V

2

O

3

has also been performed recently [37].

A puzzling feature of present experiments in the Ce compounds and

V

2

O

3

is that while thermodynamic and transport properties are in rough

agreement with the theory discussed in this chapter, the dynamic neu-

tron scattering experiments show clear scaling of the response functions

as a function !=T (where ! is the measurement frequency). Such scal-

ing was discussed at length in Part 2, but is only a property of quan-

tum critical points below their upper critical dimension; in contrast,

the theories used to explain thermodynamic measurements are above
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their upper critical dimension, and do not predict scaling of response

functions as a function of !=T|resolving this inconsistency is an im-

portant direction for future work. Some recent theoretical work on

quantum transitions between spin density waves and Fermi liquids is

in Refs [354, 261, 348, 379], and an interesting perspective on open

questions has been given by Coleman [102].

The interpretation of the intermediate temperature properties of the

un- and lightly doped cuprates in terms of the vicinity of a quantum

critical point to an antiferromagnetically ordered state was discussed

in Refs [440, 97]. In the same context, the possible relevance of a

z = 2 spin density wave transition of the type considered here, and

its crossover to the z = 1 transition studied in Part 2 have been dis-

cussed in Refs [432, 40, 434]. More recently, greater interest has focused

on the charge degrees of freedom [495, 57], with emerging evidence that

the doped holes in the cuprates form striped arrangements, at least

over intermediate time scales; this phenomenon has been addressed in

z = 2 theories of charge density wave formation of the type discussed

here [74, 75, 76] or in e�ective models of electronic motion on 
uctuat-

ing stripes [140, 541, 275, 542]. The true situation probably involves an

intricate interplay of both charge and spin driven e�ects [512, 505, 506],

and a predominance of the z = 1 physics of Part 2, as appears to be the

case in the latest neutron scattering experiments [2].

In our discussion of the origin of spin density wave order, we assumed

that di�erent portions of the Fermi surface were not `nested'. The nested

case has been discussed in Refs [92, 18].

The discussions in this chapter do not apply directly to the case of

the Stoner transition [481] from a Fermi liquid to a partially polarized

ferromagnet; this is the limiting case of a spin density wave with wavevec-

tor

~

Q = 0. The expansion (12.8) has a di�erent form for this case as

was discussed in Refs [225, 341]. The presence of additional wavevec-

tor dependent non-analyticities has been pointed out recently by Belitz

and Kirkpatrick [273, 519, 49, 48], who have also emphasized that these

drastically modify the traditional [225] results. Experimental studies of

the ferromagnetic case may be found in the work of the group of Lon-

zarich [256] and the results are in general agreement with self-consistent

Hartree calculations in the spirit of this chapter.

This is also an appropriate point to mention work on quantum tran-

sitions of BCS superconductors formed by pairing between the electrons

of the Fermi liquids considered here. Fluctuation and �nite tempera-

ture inelastic e�ects in the vicinity of a quantum transition between a
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superconductor and a Fermi liquid in a clean system have been consid-

ered recently [274, 397]. The transition between a BCS superconductor

and a Fermi liquid in disordered systems has also been the subject of

considerable interest [320, 148, 149]. Some interesting numerical simula-

tions have proposed the existence of a second order quantum transition

between a BCS superconductor and an antiferromagnetic Mott insula-

tor [29]; the interplay between these two phases has also been the focus

of work on models with higher internal symmetry groups [545, 224].



13

Heisenberg spins: ferromagnets and

antiferromagnets

Part 2 of this book dealt with the magnetically ordered and quantum

paramagnetic phases of models of N -component quantum rotors. In

Chapter 10 we showed how the N = 2 rotors could be mapped onto

certain boson models in the vicinity of a phase transition between a

Mott insulator and a super
uid. In this chapter we shall consider models

of Heisenberg spins: these directly represent the spin 
uctuations of

physical electrons in insulators or other systems with an energy gap

towards charged excitations (e.g., certain quantum Hall states). We

shall describe the conditions under which certain models of Heisenberg

spins reduce to N = 3 quantum rotor models, thus providing the long-

promised physical motivation for studying the latter models; recall that

a preview of this mapping already appeared in Section 5.1.1.1. We shall

also discuss the physical properties of Heisenberg spin models under

conditions in which they do not map onto the rotor models of Part 2.

We will deal with lattice models with the Hamiltonian

H

S

= �

X

i;j

J

ij

^

S

i

�

^

S

j

�H �

X

i

^

S

i

: (13.1)

Here the magnetic �eld H is precisely the same (with no overall scale

factor) as that appearing in the rotor Hamiltonian (5.1): H couples to

a conserved total spin (or for the rotors the total angular momentum)

which, as we will see, commutes with the rest of the Hamiltonian. The

^

S

i

are Heisenberg spin operators whose basic properties were introduced in

Section 5.1.1.1: they satisfy the commutation relations (5.8) on each site

i, and act on the 2S+1 states (5.9) of the spin S representation on each

site. The J

ij

are a set of translationally-invariant exchange interactions

between these sites.

We will begin in Section 13.1 by showing how to set up a path integral

320
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for systems with states restricted in the manner (5.9,5.10) on each site.

Then Section 13.2 will consider the properties of ferromagnets in which

all J

ij

> 0, and the ground state is the fully polarized state with all

spins parallel and the total spin takes its maximum possible value. The

properties of antiferromagnets in which the ground state has negligible

total spin will be discussed in Section 13.3{these are likely to arise when

all J

ij

< 0. Finally Section 13.4 will consider more complex situations

with partial uniform polarization of the spins, which is accompanied by

a certain `canted' order in dimensions d > 1.

13.1 Coherent state path integral

We have previously encountered the coherent state path integral in Sec-

tion 10.2 where we introduced, following Refs [360, 456], a path integral

representation of canonical bosons. An important feature of the path

integral was the `Berry phase' term b

y

db=d� in (10.19) which accounted

for the kinematics of ordinary bosons, and played an important role in

the structure of the Mott insulating phases and the nature of their tran-

sitions to the super
uid. In this section we will present a reasonably

complete derivation of the corresponding path integral for the quantum

mechanics of the spin states (5.9). Many derivations of this path inte-

gral exist in the literature, but we shall follow here the approach used in

Ref [400] which has the advantage of explicitly maintaining spin rotation

invariance. The reader is also referred to a collection of reprints [277]

for further information on coherent states and their relationship to path

integrals.

We shall deal in this section with a single Heisenberg spin, and will

therefore drop the site index. There is no loss of generality in this, as the

same manipulations can be carried out independently on each site. The

derivation of any path integral proceeds by the insertion of a complete

set of states at in�nitesimal intervals in time upon the time evolution

operator of the system. It would clearly pay to choose a set of states

under which the matrix elements of

^

S are simple: for this reason the

states in (5.9) are not convenient. Instead, we shall use the so-called

spin-coherent states. These are an in�nite set of states jNi, labeled

by the points N on the surface of the unit sphere; so N is a three-

component vector satisfying N

2

= 1. As there are only a total of 2S+1

independent states, these states clearly cannot be mutually orthogonal.
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They are normalized to unity

hNjNi = 1; (13.2)

hNjN

0

i 6= 0 for N 6=N

0

, and satisfy the completeness relation

Z

dN

2�

jNihNj = 1 =

S

X

m=�S

jS;mihS;mj; (13.3)

where the integral of N is over the unit sphere. Because of their non-

orthogonality, these states are called `over-complete'. What makes them

extremely useful is that the diagonal expectation value of the operator

^

S is very simple:

hNj

^

SjNi = SN: (13.4)

So the state jNi is almost like a classical spin of length S pointing

in the N direction; indeed, the spin coherent states are the minimum

uncertainty states localized as much in the N direction as the principles

of quantum mechanics will allow, and in the large S limit, jNi reduces

to a classical spin in the N direction.

The relations (13.2), (13.3), and (13.4) de�ne the spin coherent states.

Let us explicitly construct them. For N = (0; 0; 1), the state jNi is easy

to determine; we have

jN = (0; 0; 1)i = jS;m = Si � j	

0

i (13.5)

We have labeled this particular coherent state as a reference state j	

0

i

as it will be needed frequently in the following. Now it should be clear

that for other values ofN we can obtain jNi simply by acting on j	

0

i by

an operator which performs a SU(2) rotation from the direction (0; 0; 1)

to the direction N. In this manner we obtain the following explicit

representation for the coherent state jNi

jNi = exp

�

z

^

S

+

� z

�

^

S

�

�

j	

0

i (13.6)

where the complex number z is related to the vectorN. This relationship

is simplest in spherical co-ordinates; if we parameterize N as

N = (sin � cos�; sin � sin�; cos �) (13.7)

then

z = �

�

2

exp(�i�): (13.8)

We leave it as an exercise for the reader to verify that (13.6) satis�es
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(13.2), (13.3) and (13.4); this veri�cation is aided by the knowledge that

the value of the expression exp(�ia �

^

S)

^

S exp(ia �

^

S), where a is some

vector, is determined solely by the spin commutation relations (5.8),

and can therefore be worked out by temporarily assuming that the

^

S

are twice the Pauli matrices{the result, when expressed in terms of

^

S,

is valid for arbitrary S.

It will be useful for our subsequent formulation to rewrite the above

results in a somewhat di�erent manner, making the SU(2) symmetry

more manifest. De�ne the 2� 2 matrix of operators

^

S by

^

S =

 

^

S

z

^

S

x

� i

^

S

y

^

S

x

+ i

^

S

y

�

^

S

z

!

: (13.9)

Then Eqn. (13.5) can be rewritten as

hNj

^

S

��

jNi = SW

��

; (13.10)

where the matrix W is

W =

�

N

z

N

x

� iN

y

N

x

+ iN

y

�N

z

�

� N � ~� (13.11)

where ~� are the Pauli matrices. So instead of labeling the coherent states

with the unit vectorN, we could equally well use the traceless Hermitean

matrix W . Furthermore, there is a simple relationship between W and

the complex number z. In particular, if we use the spin-1/2 version of

the operator in Eqn. (13.6)

U = exp

��

0 z

�z

�

0

��

(13.12)

(U is thus a 2� 2 matrix), then we �nd

W = U�

z

U

y

(13.13)

We proceed to the derivation of the coherent state path integral for

the partition function

Z = Tr exp(�H(

^

S)=T ); (13.14)

we will restrict the following discussion to Hamiltonians in which H is

a linear function of any given

^

S on a �xed site. The H in Eqn. (13.1)

is certainly of this type. The transformation of Z into a path-integral

proceeds along the same lines as that discussed in Refs [360, 456] for
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bosons. We break up the exponential into a large number of exponentials

of in�nitesimal time evolution operators

Z = lim

M!1

M

Y

i=1

exp(���

i

H(

^

S)); (13.15)

where ��

i

= 1=MT , and insert a set of coherent states between each

exponential by using the identity (13.3); we label the state inserted at a

`time' � by jN(�)i. We can then evaluate the expectation value of each

exponential by use of the identity (13.4)

hN(�)j exp(���H(

^

S))jN(� +��)i

� hN(�)j1 ���H(

^

S)jN(� +��)i

� 1���hN(�)j

d

d�

jN(�)i ���H(SN)

� exp

�

���hN(�)j

d

d�

jN(�)i ���H(SN)

�

: (13.16)

In each step we have retained expressions correct to order �� . The

coherent states at time � and � +�� can in principle have completely

di�erent orientations, so, a priori, it is not clear that expanding these

states in derivatives of time is a valid procedure. This is a subtlety that

a�icts all coherent state path integrals, and has been discussed more

carefully by Negele and Orland [360]: the conclusion of their analysis

is that except for the single `tadpole' diagram where a point-splitting

of time becomes necessary, this expansion in derivatives of time always

leads to correct results. In any case, the resulting coherent state path

integral is a formal expression which cannot be directly evaluated, and

in case of any doubt one should always return to the original discrete

time product in (13.15).

Keeping in mind the above caution, we insert (13.16) into (13.15),

take the limit of small �� and obtain the following functional integral

for Z

Z =

Z

N(0)=N(1=T )

DN(�) exp

(

�

Z

1=T

0

d� [S

B

+H(SN(�))]

)

;

(13.17)

where

S

B

= hN(�)j

d

d�

jN(�)i (13.18)

and H(SN) is obtained by replacing every occurrence of

^

S in the Hamil-

tonian by SN. The promised Berry phase term is S

B

, and it represents
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the overlap between the coherent states at two in�nitesimally separated

times. It can be shown straightforwardly from the normalization condi-

tion, hNjNi = 1, that S

B

is pure imaginary. In the remainder of this

section we will manipulate S

B

into a physically more transparent form

using the expressions above for the coherent states. For the case of the

boson coherent state path integral, it is precisely the analog of S

B

which

becomes b

y

(@b=@�) in (10.19).

Clearly, the � -dependence ofN(�) implies a � dependent z(�) through

(13.8). From (13.6) we have therefore

d

d�

jN(�)i =

d

d�

exp

�

z(�)

^

S

+

� z

�

(�)

^

S

�

�

j	

0

i (13.19)

Taking this derivative is however not so simple: notice that if an operator

^

O does not commute with its derivative d

^

O=d� then

d

d�

exp(

^

O) 6=

d

^

O

d�

exp(

^

O) (13.20)

The correct form of this result is in fact

d

d�

exp(

^

O) =

Z

1

0

du exp(

^

O(1� u))

d

^

O

d�

exp(

^

Ou); (13.21)

where u is just a dummy integration variable. This result can be checked

by expanding both sides in powers of

^

O and verifying that they agree

term by term. More constructively, a `hand-waving' derivation can be

given as follows

d

d�

exp(

^

O) =

d

d�

exp

�

^

O

Z

1

0

du

�

= lim

M!1

d

d�

exp

 

M

X

i=1

^

O�u

i

!

with �u

i

= 1=M

� lim

M!1

d

d�

M

Y

i=1

exp

�

^

O�u

i

�

� lim

M!1

M

X

j=1

j

Y

i=1

exp

�

^

O�u

i

�

d

^

O

d�

�u

j

M

Y

i=j+1

exp

�

^

O�u

i

�

(13.22)

Finally, taking the limit M ! 1, we obtain the needed result (13.21).

Now using (13.19) and (13.21) we �nd

S

B

=

Z

1=T

0

d�hN(�)j

d

d�

jN(�)i
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=

Z

1=T

0

d�

Z

1

0

duhN(�; u)j

�

@z

@�

^

S

+

�

@z

�

@�

^

S

�

�

jN(�; u)i (13.23)

where N(�; u) is de�ned by

jN(�; u)i = exp

�

u

�

z(�)

^

S

+

� z

�

(�)

^

S

�

��

j	

0

i (13.24)

From this de�nition, three important properties of N(�; u) should be

apparent

N(�; u = 1) �N(�);

N(�; u = 0) = (0; 0; 1);

and N(�; u) moves with u along the great circle

between N(�; u = 0) and N(�; u = 1) (13.25)

We can visualize the dependence on u by imagining a string connecting

the physical value of N(�) = N(�; u = 1) to the North pole, along which

u decreases to 0. Associated with each N(�; u) we can also de�ne a u-

dependent W (�; u) as in Eqn. (13.11); the analog of (13.25) is W (�; u =

1) � W (�) and W (�; u = 1) = �

z

. A simple explicit expression for

W (�; u) is also possible: we simply generalize (13.12) to

U(�; u) = exp

�

u

�

0 z

�z

�

0

��

(13.26)

then the relationship (13.13) gives us W (�; u). Now we can use the

expression (13.10) to rewrite (13.23) as

S

B

= S

Z

1=T

0

d�

Z

1

0

du

�

@z

@�

W

21

(�; u)�

@z

�

@�

W

12

(�; u)

�

; (13.27)

As everything is a periodic function of � , we may freely integrate this

expression by parts and obtain

S

B

= �S

Z

1=T

0

d�

Z

1

0

duTr

��

0 z(�)

�z

�

(�) 0

�

@

�

W (�; u)

�

: (13.28)

where the trace is over the 2� 2 matrix indices. The de�nitions (13.13)

and (13.26) can be used to easily establish the identity

�

0 z(�)

�z

�

(�) 0

�

= �

1

2

W (�; u)

@W (�; u)

@u

; (13.29)

which when inserted into (13.28) yields the expression for S

B

in one of
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its �nal forms

S

B

=

Z

1=T

0

d�

Z

1

0

du

�

S

2

Tr

�

W (�; u)

@W (�; u)

@u

@W (�; u)

@�

��

(13.30)

An expression for S

B

solely in terms of N(�; u) can be obtained by

substituting in (13.11); this yields the �nal expression for S

B

, which

when inserted in (13.17) gives us the coherent state path integral for a

spin:

S

B

= iS

Z

1=T

0

d�

Z

1

0

du N �

�

@N

@u

�

@N

@�

�

(13.31)

This expression has a simple geometric interpretation. The function

N(�; u) is a map from the rectangle 0 � � � 1=T , 0 � u � 1 to the

unit sphere. As N moves from N(�) to N(� + ��) it drags along the

string connecting it to the North pole represented by the u dependence

of N(�; u) (recall (13.25)). It is easy to see that the contribution to S

B

of this evolution is simply iS times the oriented area swept out by the

string. The value of this area clearly depends upon the fact that u = 0

end of the string was pinned at the North pole: this was a `gauge' choice,

and by choosing the phases of the coherent states di�erently, we could

have pinned the point u = 0 anywhere on the sphere. However when we

consider the complete integral over � in (13.31), the boundary condition

N(1=T ) = N(0) (required by the trace in (13.14) shows thatN(�) sweeps

out a closed loop on the unit sphere. Then the total � integral in (13.31)

is the area contained within this loop, and is independent of the choice

of the location of the u = 0 point. Actually this last statement is not

completely correct: the `inside' of a closed loop is not well-de�ned and

the location of the u = 0 point makes the oriented area uncertain modulo

4� (which is the total area of the unit sphere). So the net contribution

of e

S

B

is uncertain up to a factor of e

i4�S

. For consistency, we can now

demand that this arbitrary factor always equal unity, which, of course,

leads to the familiar requirement that 2S be an integer.

13.2 Quantized ferromagnets

We turn to the lattice model H

S

in (13.1), and consider the case of fer-

romagnetic interactions where all J

ij

> 0. In this case, the state with

all spins parallel

Q

i

jS; Si

i

is the exact ground state (see, e.g., Ref. [27];

we have assumed that the �eld H points along the spin quantization z

axis). The adjective `quantized' in the title refers to the fact that the
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magnetization density, M

0

, (this is magnitude of the expectation value

of the total spin magnetization

P

i

^

S

i

divided by the system volume) is

pinned at a simple value which can be determined a priori, and which

does not vary as the exchange constants J

ij

are varied. In Section 13.4,

we will meet examples of quantized ferromagnets in which the magnetic

moment is quantized, but not at a fully polarized value: fractional quan-

tization is also possible, but in every case twice the average total spin

moment per unit cell is an integer. The discussion in this chapter will

apply to the low energy properties of all such quantized ferromagnets,

but will only explicitly refer to the fully polarized case.

Apart from their quantized moment, the characteristic property of a

quantized ferromagnet is that the only low-lying excitation which carries

spin is a `spin-wave' which arises from a slow rotation of the orientation

of the ordered moment. Many readers may be familiar with the fact that

the wave function of a single spin-wave excitation can also be written

down exactly for a fully polarized, quantized ferromagnet: these well-

known results will also emerge below. The purpose of our discussion

shall be two-fold: (i) to obtain a continuum �eld theory of the low-lying

excitations of the quantized ferromagnet, and to understand its behavior

under a scaling transformation, and (ii) to use the continuum theory to

systematically enumerate the parameters required describe the low T

properties of such ferromagnets.

We begin by constructing the continuum �eld theory for the low-lying

excitations above the fully-polarized ferromagnetic ground state. It is

reasonable to expect that these will consist of 
uctuations in which the

orientations of the spins varies slowly from site to site. We start with

the functional integral like (13.17) for the spin orientationN

i

(�) on each

site i, and perform a gradient expansion by introducing the continuum

�eld N(x; �). Keeping terms up to second spatial derivatives we obtain

for the partition function Z = Tre

�H

S

=T

[250]:

Z =

Z

DN(x; �)�(N

2

� 1) exp

 

�

Z

1=T

0

d�

Z

d

d

xL

F

!

L

F

= iM

0

Z

1

0

duN �

�

@N

@u

�

@N

@�

�

�M

0

N �H+

�

s

2

(rN)

2

; (13.32)

where M

0

� S=v is the magnetization density of the ground state, v

is the volume per site, and �

s

is the spin sti�ness. We introduced the

analogous sti�ness for the rotor model in Section 5.3.3; here, the gradient
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expansion upon the partition function of H

S

gives us

�

s

=

S

2

2v

X

m

J

r

x

2

m1

; (13.33)

where the J

m

are the set of exchange constants coupling a given site i to

the other sites separated from i by (x

m1

; x

m2

: : : x

md

); the sum over m

includes separate terms for ~x

m

and �~x

m

. The continuum theory (13.32)

should really be regarded as a convenient schematic representation of

the quantum ferromagnet, and we will often need to go back to the

underlying lattice model H

S

to regulate short distance singularities.

We consider the behavior of L

F

under a rescaling transformation [404]

at T = 0. The continuum theory is characterized by two dimensionful

couplings M

0

and �

s

, and despite the non-linear constraint in (13.32),

some special properties of the quantum theory make it possible to de-

termine their exact renormalization group 
ow equations (this should

be contrasted from the rotor theory (5.16) where no such exact results

were available). First, we noticed at the end of Section 13.1 that the

single spin Berry phase was uncertain up to an additive constant of 4�S,

and this imposed the requirement that S be integer or half-integer. Pre-

cisely the same argument applied to the Berry phase of the continuum

ferromagnet (13.32) in a hypercubic box of volume L

d

, implies 2M

0

L

d

must be an integer (this is just a fancy way of saying that the continuum

ferromagnet must model an integral number of spins). This integer can-

not change under any scaling transformation, and as L transform as a

physical length, the invariance of M

0

L

d

leads to the exact 
ow equation

dM

0

d`

= dM

0

: (13.34)

This equation describes the quantization of the average magnetic mo-

ment at its fully saturated value.

A closely related scaling equation holds for �

s

, and this follows from

the exactly known single spin-wave spectrum. To prepare for some future

computations, we derive this by going back to the lattice Hamiltonian,

H

S

, and then taking the continuum limit of the resulting response func-

tions. The most convenient formalism for computations is provided by

the Dyson-Maleev transformation [132, 325] from the spin operators

^

S

i

to Bose operators

^

b

i

. Explicitly, the mapping is

^

S

+i

=

p

2S

^

b

y

i

^

S

�i

=

p

2S

�

^

b

i

�

1

2S

^

b

y

i

^

b

i

^

b

i

�
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^

S

z

= �S +

^

b

y

i

^

b

i

: (13.35)

Along with the constraint

^

b

y

i

^

b

i

� 2S, this de�nes an exact mapping be-

tween the Hilbert space of the spin S spins (2S + 1 states per spin)

and the bosons (2S + 1 possible boson occupation numbers); in prac-

tice, one does not even have to impose the constraint

^

b

y

i

^

b

i

� 2S, as all

matrix elements out of the physical sector vanish. The reader can verify

that the operators in (13.35) do indeed satisfy the commutation rela-

tions (5.8). The relations (13.35) do not satisfy the hermiticity require-

ment

^

S

+i

= (

^

S

�i

)

y

, but this can be repaired by performing a similarity

transformation on the space of spin states: the reader should consult

Ref [16] for more information, as here we shall mainly use (13.35) as

a black-box tool. Inserting (13.35) into (13.1), and Fourier transform-

ing to momentum space by de�ning

^

b(

~

k) =

p

v

P

i

^

b

i

e

�i

~

k�~x

(these Bose

operators then satisfy the canonical continuum commutation relations

[

^

b(

~

k);

^

b

y

(

~

k

0

)] = (2�)

3

�

d

(

~

k �

~

k

0

)), the Hamiltonian becomes

H

S

=

Z

d

d

k

(2�)

d

n

S

h

J(0)� J(

~

k)

i

+H

o

^

b

y

(

~

k)

^

b(

~

k) +

v

2

Z

4

Y

i=1

d

d

k

i

(2�)

d

(2�)

d

�

d

(

~

k

1

+

~

k

2

�

~

k

3

�

~

k

4

)

h

J(

~

k

1

)� J(

~

k

1

�

~

k

4

)

i

�

^

b

y

(

~

k

1

)

^

b

y

(

~

k

2

)

^

b(

~

k

3

)

^

b(

~

k

4

) (13.36)

where all momentum integrals are over the �rst Brillouin zone of the

lattice, and

J(

~

k) =

X

m

J

m

e

�i

~

k�~x

m

: (13.37)

This bosonic form for H

S

can be analyzed by the methods developed in

Chapter 11 for (11.1). The ground state is the vacuum, j0i, with no

^

b

particles (the fully polarized ferromagnet), while the lowest excitations

are single boson states,

^

b

y

(

~

k)j0i, (`spin waves') which are exact eigen-

states of H

S

with energy "

~

k

= S(J(0) � J(

~

k) + H . We have "

~

k

> 0

for all

~

k, which indicates that the choice of the no boson state as the

ground state is a consistent one. At T = 0, the one particle propagator

is given exactly by the free particle propagator, as in (11.50), for there

are no other particles present. Taking the small momentum limit of this

propagator, and using the correspondence between the continuum �elds

^

b

y

(

~

k; !

n

) = (M

0

=2)

1=2

N

+

(�

~

k;�!

n

) (13.38)

which follows from our de�nitions above (N

�

= N

x

� iN

y

), we obtain
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an exact result for a two-point correlator of (13.32)

D

N

�

(�

~

k;�!

n

)N

+

(

~

k; !

n

)

E

=

2

�i!

n

M

0

+ �

s

k

2

+M

0

H

: (13.39)

This represents the propagation of spin waves with the exact dispersion

"

k

= (�

s

=M

0

)k

2

+H . The consistency of this dispersion with the scaling

transformation requires dim[H ] = z (as before in (5.42)), and the exact

scaling equation

d�

s

d`

= (d+ z � 2)�

s

: (13.40)

As the spin-wave disperses quadratically with momentum at small k,

it is convenient to choose z = 2 (other choices are also permissible, as

physical observables will have compensating scale dependence arising

from that of �

s

).

The exact results (13.34), (13.39) and (13.40) are strongly reminiscent

of the behavior of the Bose gas in Section 11.8. In both cases, the

simplicity is due to the 
uctuationless nature of the ground state and

the exactly known single particle excitations. For the case of the Bose

gas we had an additional non-linearity u, whose renormalization was

determined by examining the two-particle scattering amplitude. In the

present situation, the dimensionful parameters �

s

and M

0

determine

both the single particle dispersion (13.39) and the strengths of the non-

linear couplings. It might therefore seem that the �nite T properties of

(13.32) must be given by universal functions of T , and the bare couplings

�

s

and M

0

, consistent with the requirements of scaling and engineering

dimensional analysis. However, this will be only the case if a short

distance cuto� scale (explicitly present in (13.36) but not in (13.32)) did

not in
uence the low energy properties. Such a scale might be required to

cut-o� large momentum (ultraviolet) divergences of momentum integrals

over virtual excitations. Motivated by the structure of the Bose gas

problem in Section 11.3, we look for ultraviolet divergences in the two

spin-wave scattering amplitude at T = 0 (we need not consider T > 0

explicitly as the �nite T corrections all involve Bose functions which fall

o� exponentially at large momentum). For the Bose gas problem we

found ultraviolet divergences for d � 2, and this identi�ed d = 2 as the

upper critical dimension below which the universality of the continuum

theory was robust. We will compute the on-shell T matrix of two spin

waves coming in with momenta

~

k

1

and

~

k

2

, and scattering into spin waves

with momenta

~

k

1

+ ~q and

~

k

2

� ~q. Conservation of energy requires

J(

~

k

1

) + J(

~

k

2

) = J(

~

k

1

+ ~q) + J(

~

k

2

� ~q): (13.41)
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To zeroth order in 1=S, the Hamiltonian (13.36) gives us the bare T -

matrix element v[J(

~

k

1

+ ~q) + J(

~

k

2

� ~q) � J(

~

k

1

+ ~q �

~

k

2

) � J(~q)]. The

�rst order in 1=S correction to the T -matrix is given by the �rst dia-

gram in Fig 11.3, and by standard quantum mechanical perturbation

theory [488], it evaluates to (this expression is the analog of (11.44))

v

2

S

Z

d

d

q

1

(2�)

d

[J(

~

k

1

+ ~q

1

) + J(

~

k

2

� ~q

1

)� J(

~

k

1

+ ~q

1

�

~

k

2

)� J(~q

1

)]

�[J(

~

k

1

+ ~q) + J(

~

k

2

� ~q)� J(

~

k

1

+ ~q �

~

k

2

+ ~q

1

)� J(~q � ~q

1

)]

J(

~

k

1

) + J(

~

k

2

)� J(

~

k

1

+ ~q

1

)� J(

~

k

2

� ~q

1

)

: (13.42)

To understand the implications of this result for the continuum theory

(13.32) we allow the external momenta

~

k

1

,

~

k

2

, ~q to become small, but

for the moment allow the internal momentum ~q

1

to be large. Then there

is a term from (13.42) which is quadratic in external momenta; however

this can be seen to vanish after use of the identity

R

d

d

q

1

e

�i~q

1

�~x

m

= 0

(valid because all the ~x

m

6= 0){it is clear that the lattice regularization

is crucial in obtaining this result, and it turns out that it is mainly this

step which cannot be deduced from the continuum theory (13.32). The

next term is quartic in external momenta, and it simpli�es to

v

2

S

Z

d

d

q

1

(2�)

d

h

P

m

J

m

e

�i~q

1

�~x

m

(

~

k

1

� ~x

m

)(

~

k

2

� ~x

m

)

i

2

P

m

J

m

(1� e

�i~q

1

�~x

m

)

; (13.43)

We take the small ~q

1

limit of (13.43) and obtain the result for the cor-

rection to the two spin-wave T -matrix [284] at low momenta:

4�

s

M

3

0

(

~

k

1

�

~

k

2

)

2

Z

d

d

q

1

(2�)

d

1

q

2

1

; (13.44)

this expression involves only couplings present in L

F

in (13.32) and so

could also have been obtained directly from the continuum quantum

theory after ignoring ultraviolet divergences in terms lower order in the

external momenta. The integral in (13.44) is dominated by the ultravi-

olet for d > 2 and so we have to return to the lattice expression (13.43).

However it is ultraviolet �nite for d < 2, and the continuum theory is in-

sensitive to lattice perturbations; the infrared divergence will of course

be cuto� by the external momenta, which have not been kept in the

propagator in the above approximation. So as in the case of the dilute

Bose gas in Section 11.3, we see the emergence of d = 2 as a critical

dimension.

It is very useful to interpret (13.44) in renormalization group sense.
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If we imagine we are integrating out virtual spin wave 
uctuations be-

tween momentum scales � and �e

�`

(� is a momentum cuto�), then

these become the boundaries of the integration in (13.44), and the re-

sult generates a four gradient term to L

F

. The generated term cannot

be quadratic in N, as that would modify the exactly known spin wave

dispersion. The simplest terms which modify only the two spin-wave

scattering amplitude are quartic also in N; by noting the momentum

dependence on (13.44), using the low momentum limit of the energy

conservation equation (13.41), and imposing the restrictions of rotation

invariance of rotational invariance, a simple analysis shows that the gen-

erated term is [404]

L

F

! L

F

+ �(r

a

N

�

r

a

N

�

r

b

N

�

r

b

N

�

� 2r

a

N

�

r

b

N

�

r

a

N

�

r

b

N

�

);

(13.45)

where � is a new coupling constant of the continuum theory. Converting

from scattering amplitudes of b to N quanta using (13.38), (13.45) and

(13.44) imply the 
ow equation

d�

d`

= (d� 2)�+

�

s

M

0

: (13.46)

As with (11.47), this 
ow equation is believed to be exact. So for d <

2, � is attracted to a universal critical value, and the parameters �

s

and M

0

completely determine the low energy physics of the continuum

theory (13.32). On the other hand, � becomes large at long distances for

d � 2, and its bare value is important: it is responsible for temperature

dependent corrections to the magnetization computed by Dyson [132].

For d < 2 these considerations imply that we may write down universal

scaling forms for the continuum ferromagnet (13.32). The usual scaling

and dimensional considerations imply for the free energy density [404]

F � TM

0

�

fm

 

�

s

M

(d�2)=d

0

T

;

H

T

!

; (13.47)

where �

fm

is a universal function; corresponding results follow for ob-

servables which are derivatives of the free energy. Actually, our argu-

ments for universality have really been made in an expansion in pow-

ers of 1=S, and so the result (13.47) only holds as an asymptotic ex-

pansion in inverse powers of �

s

=(M

(d�2)=d

0

T ), and this represented by

the symbol �. Indeed, (13.47) is expected to be true to all orders in

�

s

=(M

(d�2)=d

0

T ), but this is not the same thing as being exactly true.

Lattice e�ects become signi�cant when T � �

s

=M

(d�2)=d

0

, for then the
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wavelength of the characteristic spin-wave is of order M

1=d

0

, which is of

order a lattice spacing; these e�ects appear as essential singularities and

destroy strict equality for (13.47). Some short distance regularization

at the scale M

1=d

0

is always required for any consistent theory of quan-

tum ferromagnets [203]. Similar considerations apply for expansions in

1=N [26, 30, 491], and for ferromagnets with more complicated replica

and supersymmetries [194, 195].

Finally, we brie
y note that e�ective classical models for thermal 
uc-

tuations in ferromagnets can be derived for T � �

s

=M

(d�2)=d

0

, precisely

as was done for the rotor models in Part 2. In d = 1 we would get the

e�ective theory (2.68) with � = �

s

=T [484], while in d = 2 we would

obtain the model (7.8) [280] with a �

MS

which can be computed from

(13.36) by methods parallel to those in Section 7.1.1.

13.3 Antiferromagnets

This section will consider models H

S

in (13.1) with all J

ij

< 0. Classi-

cally (i.e., in the limit S !1), such models will minimize their energies

by making nearest neighbor spins acquire an anti-parallel orientation.

On bi-partite lattices (i.e., lattices which can be split into two equiva-

lent sublattices so that all nearest neighbors of any site on one sublattice

belong to the other sublattice) with nearest neighbor interactions, the

anti-parallel constraint is easy to satisfy: the spins simply point in op-

posite directions on the two sublattices. Notice that any pair of spins is

either parallel or antiparallel, and so such an ordering is collinear . We

will begin by exclusively considering quantum antiferromagnets whose

classical ground state is collinear in Section 13.3.1: such an ordering

is expected to be present at least over short distances in the quantum

case. Non-collinear ordering arises on non-bipartite lattices or even on

bipartite lattices with further neighbor interactions: such antiferromag-

nets are classically frustrated and possess ground states in which the

spins are coplanar (as on the triangular lattice with nearest neighbor

interactions), or in some rare cases, can even form structures which are

three-dimensional in spin space. We will consider the non-collinear cases

in Section 13.3.2.

13.3.1 Collinear order

For de�niteness, we will begin by considering antiferromagnets on a d-

dimensional hypercubic lattice with only a nearest neighbor exchange
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J

ij

= �J < 0; other collinear antiferromagnets can be treated in a simi-

lar manner. In the classical limit of large S, as noted above, the ground

state has spins oriented in opposite directions on the two sublattices:

this is the so-called N�eel-ordered state. For smaller S this orientation

should survive at least over a few lattice spacings, suggesting that a

continuum description of the quantum antiferromagnet may be possi-

ble [204, 3, 4]. We therefore begin by introducing a parameterization of

the unit length spin �eld N

i

(�) which captures this local ordering. We

write

N

i

(x; �) = �

i

n(x

i

; �))

q

1� (a

d

=S)

2

L

2

(x

i

; �)+(a

d

=S)L(x

i

; �); (13.48)

where �

i

equals �1 on the two sublattices and a is the lattice spac-

ing. The �elds n(x

i

) and L(x

i

) parameterize the staggered and uniform

components of the Heisenberg spins. The prefactor of a

d

=S has been

associated with L so that the spatial integral of L over any region is

precisely the total magnetization inside it. Both �elds are assumed to

be slowly varying on the scale of a lattice spacing. This is certainly true

as S !1, and it is hoped that this assumption remains valid down to

S = 1=2. So we will treat n(x; �) and L(x; �) as continuum quantum

�elds which can be expanded in spatial gradients over separations of

order a. These continuum �elds satisfy the constraints

n

2

= 1 ; n � L = 0; (13.49)

which combined with (13.48) imply that N

2

i

= 1 is obeyed. Further,

spins on nearby sites are expected to be predominantly antiparallel, so

the uniform component L should be small; more precisely we have

L

2

� S

2

a

�2d

: (13.50)

The �eld n(x; �) clearly plays the role of the order parameter asso-

ciated with N�eel ordering. Note that although n varies slowly on the

scale of a lattice spacing, values of n on well separated points can be

considerably di�erent, leaving open the possibility of a quantum param-

agnetic phase with no magnetic long range order. Magnetic N�eel order

requires that the time-average orientation of n(x; �) is correlated across

the sample: whether this happens will be determined by the e�ective

action for n 
uctuations, which we will now derive.

We insert the decomposition (13.48) for N

i

into H

S

(SN

i

(�)) and

expand the result in gradients, and in powers of L. This yields

H

S

=

Z

d

d

x

�

JS

2

a

2�d

2

(r

x

n)

2

+ dJa

d

L

2

�H � L

�
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�

1

2

Z

d

d

x

�

Nc

g

(r

x

n)

2

+

cg

N

L

2

�H � L

�

: (13.51)

In the second equation we have introduced the couplings c =

p

2dJSa

and g = (N=S)

p

2da

d�1

: the notation is suggestive and anticipates our

eventual mapping of the present model to the rotor models in (3.12) and

(5.16). In the present case N = 3, but we introduced a general factor of

N for notational consistency with Part 2. If we had used a di�erent form

for H

S

with modi�ed short-range exchange interactions, the continuum

limit of H would have been the same but with new values of g and c.

To complete the expression for the coherent state path-integral of the

antiferromagnet in the continuum limit, we also need the expression for

S

B

in terms of n;L. We insert (13.48) into the (13.31) and retain terms

up to linear order in L: this yields

S

B

= S

0

B

+ i

Z

d

d

x

Z

1=T

0

d�

Z

1

0

du

�

n �

�

@n

@u

�

@L

@�

�

+ +n �

�

@L

@u

�

@n

@�

�

+ L �

�

@n

@u

�

@n

@�

��

(13.52)

where

S

0

B

= iS

X

i

�

i

Z

1=T

0

d�

Z

1

0

du n(x

i

) �

�

@n(x

i

)

@u

�

@n(x

i

)

@�

�

(13.53)

The evaluation of S

0

B

in the continuum limit is a rather subtle matter,

as the leading �

i

in (13.53) shows that it is the sum of terms which

oscillate in sign on the two sublattices. The naive assumption would be

that these oscillating terms just cancel out, and therefore S

0

B

= 0 in the

continuum limit. For some purposes this assumption is in fact adequate,

but there are a number of important cases where S

0

B

is non-vanishing

and is crucial for a complete understanding of the physics. We will

postpone a careful evaluation of S

0

B

to the following subsections where

we will consider its consequences in d = 1 and d = 2 separately. Let us

�rst simplify the other terms in (13.52) a bit further.

We use the fact that the vectorsL, @n=@� , @n=@u are all perpendicular

to n; hence, they lie in a plane and have a vanishing triple product:

L �

�

@n

@u

�

@n

@�

�

= 0: (13.54)

Using (13.54) in (13.52) we �nd

S

B

= S

0

B

+ i

Z

d

d

x

Z

1=T

0

d�

Z

1

0

du

�

@

@�

�

n �

�

@n

@u

� L

��
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+

@

@u

�

n �

�

L�

@n

@�

���

(13.55)

The total � derivative yields 0 after using the periodicity of the �elds

in � , while the total u derivative yields a surface contribution at u = 1.

This gives �nally

S

B

= S

0

B

� i

Z

d

d

x

Z

1=T

0

d�L �

�

n�

@n

@�

�

(13.56)

Putting together (13.51) and (13.56) in (13.17) we obtain the following

path-integral for the partition function of the antiferromagnet

Z =

Z

DnDL�(n

2

� 1)�(L � n) exp(�S

0

B

� S

0

n

)

S

0

n

=

1

2

Z

1=T

0

d�

Z

d

d

x

�

Nc

g

(r

x

n)

2

+

cg

N

L

2

� 2iL �

�

n�

@n

@�

� iH

��

(13.57)

The functional integral over L can be carried out explicitly (after im-

posing the constraint L � n = 0, e.g., by adding a term w(L � n)

2

to

the Hamiltonian, and taking the limit w ! 1 after carrying out the

integral) and we obtain the �nal result of this section [204, 3, 4]

Z =

Z

Dn�(n

2

� 1) exp(�S

0

B

� S

n

)

S

n

=

N

2cg

Z

1=T

0

d�

Z

d

d

x

�

c

2

(r

x

n)

2

+ (@

�

n� iH� n)

2

�

: (13.58)

Note that S

n

is identical to the rotor model action studied in (5.16).

However, before we can carry over all the results of Part 2 here, we have

to examine the consequences of S

0

B

, and this will be done separately in

the following two subsections in dimensions d = 1 and d = 2 respectively.

13.3.1.1 d = 1

It is simpler to evaluate S

0

B

in d = 1 by a geometric argument, rather

than working directly with the formal expression (13.53). We have al-

ready argued below (13.31), that the contribution of each site i in (13.53)

equals �

i

S times the area on the unit sphere contained inside the close

loop de�ned by the periodic time evolution of n(x

i

; �): we de�ne this

area to equal A

i

. Let us examine the contribution of two neighboring

sites, i and i + 1, to S

0

B

. The weight �

i

will have opposite signs on
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these sites, and so the net contribution will be the di�erence of the ar-

eas. We can further assume that the order parameter �eld n(x

i

) only

varies slightly between i and i + 1: under these conditions, and using

the de�nition of an area element on the sphere, we have (after de�ning

�n(x

i

) = n(x

i+1

)� n(x

i

))

A

i+1

�A

i

�

Z

1=T

0

d�n(x

i

) �

�

�n(x

i

)�

@n(x

i

)

@�

�

� a

Z

d�n(x

i

) �

�

@n(x

i

)

@x

i

�

@n(x

i

)

@�

�

(13.59)

The summation in (13.53) can be carried out over pairs of sites: all

terms are of the same sign and therefore the summation can be easily

converted into an integral. In this manner we obtain our �nal result for

S

0

B

in d = 1 [204, 3, 4]:

S

0

B

= i

�

4�

Z

dx

Z

1=T

0

d�n �

�

@n

@x

�

@n

@�

�

(13.60)

where � = 2�S. Some comments and/or cautions about the derivation

leading up to (13.60) are in order. The arbitrary way in which the sites in

(13.59) were paired suggests that the answer is sensitive to the boundary

conditions, and upon whether there are an even or odd number of sites in

the system. There are indeed interesting boundary e�ects in the physics

of antiferromagnetic spin chains [10, 11, 198], but we will not discuss

them here. The overall sign of the answer in (13.60) also depends upon

the sign of �

i

, but as we will see shortly, the physics is does not depend

upon the sign of �. Finally the result (13.60) can also be derived by

analytic computations from (13.53): we can write the oscillating sum

as half the spatial integral of the spatial derivative of the contribution

of each site (by the same arguments leading to (13.59)){ then using the

fact that the triple product of @n=@x, @n=@� and @n=@u must vanish

we can obtain (13.60) using manipulations similar to those leading to

(13.56).

In its present form, S

0

B

is the so-called topological �-term, familiar in

the particle theory literature. The co-e�cient of � in (13.60) computes a

simple topological invariant which, for periodic boundary conditions in

space, is always an integer. If we consider the �eld con�guration n(x; �)

as a map from two-dimensional spacetime, with periodic boundary con-

ditions, to the surface of a unit sphere, then the topological invariant

is simply the number of times spacetime has been wrapped around the
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sphere. It is useful to visualize the simplest con�guration of n(x; �) cor-

responding to the topological invariant of unity. Let the unit sphere be

placed on an elastic sheet, representing space time. Now fold up the

sheet to cover the sphere once: the orientation of n at (x; �) is given by

the point on the sphere adjacent to the point (x; �) on the sheet. Such a

spacetime con�guration represents a tunneling event: deep in the past,

or far in the future, n points to the north pole; however at some time, in

a certain compact region of space, the n orientation tunnels all the way

to the vicinity of the south pole and back; con�gurations with larger

topologically invariants can be similarly interpreted. The result (13.23)

implies that each such tunneling event yields a factor of e

i�

= (�1)

2S

to the path integral for the partition function. This is the only con-

sequence of the S

0

B

term. Of course, the terms in S

n

give the usual

positive weights (in imaginary time) also present for the rotor model.

Notice that as � is always an integral multiple of �, the sign of � does

not change the value of e

i�

.

We are now able to state our principal conclusions, �rst reached by

Haldane. For integer S, the phase factor with topologically non-trivial

tunneling events is simply unity, and the theory reduces to the rotor

model action S

n

, which has been studied in some detail in Chapters 5

and 6. On the other hand, for half-integer S, there are clearly substantial

di�erences: the present formulation of the theory in (13.58) is however

not a particularly convenient way of exploring the physics|it does tell us

that the low energy properties of all the half-integer cases are the same,

and we will explore the S = 1=2 case in the Chapter 14 by alternative

methods.

We anticipate these results by sketching the renormalization group


ows for the dimensionless coupling g for the cases � = 0 and � = � in

Fig 13.1. For the case of integer S, where � = 0, the 
ow just represents

(6.8): all values of g 
ow eventually to strong coupling, and as we saw in

Chapter 6, there is always an energy gap above the ground state. For the

case � = �, the perturbative 
ow at small g is the same as before, as it is

independent of �. However, more sophisticated considerations [9, 5, 544,

142] to be discussed in Chapter 14, show that there is a �xed point at

g = g

c

, of order unity, which attracts all couplings with g < g

c

. We will

also see that the ground state is then a so-called `Tomonaga-Luttinger

liquid' and has gapless, linearly dispersing excitations. For g > g

c

(and

� = �) the 
ow is again to strong coupling, and the ground state will

be seen to be a `spin-Peierls' state with an energy gap to all excitations

(such a state will be described shortly below for d = 2).
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θ = 0

θ = π

g0

g
gc0 Tomonaga

Luttinger liquid
spin-Peierls

Quantum paramagnet with an energy gap

Fig. 13.1. Renormalization group 
ows for the dimensionless coupling g in

(13.58) for d = 1 with S

0

B

given by (13.60). For � = 0, the 
ow is given by

(6.8), and there is always an energy gap above the ground state. For � = �,

there is a �xed point g = g

c

, and near it the 
ow is dg=d` / (g � g

c

)

2

.

We conclude by reviewing a bit more explicitly the implications of

the results of Chapters 5 and 6 for antiferromagnetic chains of integer

spins. The mapping between correlation functions of the two theories is

provided by (13.48). From this, we see that the correlator �

u

de�ned

in (6.1) also speci�es the 
uctuations of the magnetization of the spin

chain: at wavevector k this is a correlation function of the

^

S

i

spins near

the wavevector q = k. Further the correlations of the order parame-

ter n given by � in (5.2) at wavevector k, map onto correlations of

^

S

i

at wavevector q = k + Q, where Q = �=a is the ordering wavevector

of the classical antiferromagnetic chain; all of the results for the rotor

correlation functions in Chapter 6 can therefore be applied to integer

spin antiferromagnets. We saw in Chapter 6 that the d = 1, N = 3

quantum rotor model always had a gap: the same is therefore true of

integer spin antiferromagnetic chains{this is the so-called Haldane gap

(we will see in the following chapter that half-integer spin chains can be

gapless). The T = 0 spectrum of the integer spin antiferromagnets is

qualitatively the same as that discussed in the strong coupling expansion

in Section 5.1.1: the lowest excited states are a triplet of S = 1 parti-

cles with in�nite lifetime: for the spin chain, this particle appears as a

pole in the

^

S-

^

S correlation function which has its minimum at q = �=a.

Higher excited states consist of multi-particle continua of this triplet of

particles.
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13.3.1.2 d = 2

We will consider the properties of the theory (13.58) on the d = 2 square

lattice.

This requires evaluation of the oscillating sum in S

0

B

in (13.53). Using

techniques very similar to those used in d = 1, it is not di�cult to

establish an important result: S

0

B

vanishes for all smooth spacetime

con�gurations of n(x; �). Simply evaluate (13.53) row by row on the

square lattice. The sum on each row is precisely the same as that carried

out in d = 1, and equals (13.60) on each row, up to an overall sign.

Moreover, because of the structure of the sublattices, this overall sign

will oscillate as we move from row to row. Now, note that the arguments

in Section 13.3.1.1 imply that the contribution of each row is quantized

in integer multiples of �. If, as we are assuming, n(x; �) is smoothly

varying, the contribution of the rows must also change smoothly as we

move from row to row. This is only compatible with the quantization if

each row yields precisely the same integer. Hence their oscillating sum

appearing in S

0

B

vanishes.

However, this is not the end of the story. It turns out there are im-

portant singular con�gurations of n(x; �) that do yield a non-vanishing

contribution to S

0

B

. We postpone discussion of the consequences of these

contributions until later in this subsection; �rst, we discuss the implica-

tion of the results of Part 2 for square lattice antiferromagnets, assuming

that S

0

B

vanishes identically for all S.

The properties of the N = 3, d = 2 quantum rotor model were �rst

discussed using the large N expansion in Chapter 5), and then in some

more detail in Chapters 7, 8, and 9. The most signi�cant feature of these

results was the existence of a quantum phase transition at a critical value

g = g

c

, separating a magnetically ordered ground state from a quantum

paramagnetic ground state.

The magnetically ordered state of the rotor model corresponds to a

\N�eel" ground state of the antiferromagnet: this is a state in which the

spin-rotation invariance of the Hamiltonian (13.1) is broken because of

a non-zero, expectation value of the spin operator, which takes opposite

signs on the two sublattices: from (13.48) we see

D

^

S

i

E

/ �

i

S hn(x

i

)i = SN

0

e

z

; (13.61)

where e

z

is a unit vector pointing the e

z

direction (say) of spin space.

Note that there was no state with such a broken symmetry in d = 1. The

missing proportionality constant in (13.61) depends upon microscopic
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details, and is not of any importance: in Part 2 we expressed physical

properties of the rotor model on the ordered side in terms of N

0

: these

can be applied unchanged to the antiferromagnet simply by replacingN

0

by the actual expectation value of �

i

D

^

S

i

E

. As in d = 1, correlators of L

at wavevector

~

k map onto correlators of

^

S at ~q =

~

k, while correlators of n

at

~

k map onto ~q =

~

k+

~

Q, with

~

Q = (�=a; �=a) the ordering wavevector.

As was the case for the rotor model, the broken rotational invariance is

restored at any non-zero temperature, and the antiferromagnet instead

acquires an exponentially large correlation length given by (7.10) and

(7.20). In these results, we take for the value of �

s

the actual T = 0 spin

sti�ness of the quantum antiferromagnet. The non-zero temperature

static and dynamic correlations are described by (7.1), with the function

�

�

as described in Chapter 7.

Numerical studies of the square lattice antiferromagnets with near-

est neighbor antiferromagnets have shown fairly conclusively that the

ground state has N�eel order for all values of S including S = 1=2 [406,

232]. Thus it appears that all such antiferromagnets map onto the ro-

tor model with g < g

c

. For S = 1=2 it has been argued [96, 97] that

the value of g is su�ciently close to g

c

so that the universal crossover

between the low and high T limits of the continuum rotor �eld theory

shown in Fig 5.2 can be observed with increasing temperature, as we

have discussed in Section 5.5. For larger S, the antiferromagnets appear

to go directly from the universal low T region on the ordered side of

Fig 5.2 to a non-universal lattice high T region [135].

Clearly, it would also be physically interesting to �nd collinear antifer-

romagnets which map onto rotor models with g > g

c

, and therefore do

not have N�eel order in their ground state. A convenient choice, studied

extensively in the literature, has been the square lattice antiferromag-

net with �rst and second neighbor antiferromagnetic exchanges, labeled

J

1

and J

2

respectively. The classical limit of this model has collinear

N�eel order for all J

2

=J

1

, and so the quantum 
uctuations should con-

tinue to be described by (13.58). Numerical and series expansion stud-

ies [87, 91, 113, 147, 174, 173, 350, 388, 450, 451, 304] for S = 1=2 have

shown that this model loses the order (13.61) around J

2

=J

1

= J

c

� 0:4 .

So we can identify the point J

2

=J

1

= J

c

with the quantum critical point

g = g

c

of the rotor model. The quantum paramagnetic state of the rotor

model should therefore yield the characteristics of the antiferromagnet

with J

2

=J

1

just above J

c

: spin rotation invariance is restored, and there
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is a gap to all excitations. Nonzero temperature properties are described

by (7.3) with �

+

the actual energy gap of the antiferromagnet.

One important property of the quantum paramagnetic state of the

rotor model deserves special mention, as it has crucial implications for

the corresponding antiferromagnet. Recall that the excited states of the

rotor model were described in terms of a N -fold degenerate quasiparti-

cle and its multiparticle continua. This lead to the spectrum shown in

Fig 4.1 and discussed in the strong-coupling expansion of Section 5.1.1:

there is an in�nitely sharp delta function in Im�(k; !) at the position of

the quasi-particle energy ! = "

k

. For N = 3, this is clearly a quasipar-

ticle with total angular momentum S = 1; so the dominant excitation

of this phase of quantum antiferromagnet is a S = 1 particle with its

energy minimum at ~q =

~

Q, and this will lead to a delta function in the

dynamic spin susceptibility at wavevectors near

~

Q. Note that this S = 1

particle exists for all values of the spin S of the individual spins of the

underlying antiferromagnet. This gapped S = 1 excitation should also

be contrasted with the spin-wave excitations of the ordered N�eel state

which are gapless, two-fold degenerate, and do not carry de�nite total

spin (although they are eigenstates of total

^

S

z

, with eigenvalues �1 for

a N�eel state polarized in the z direction).

We conclude this subsection by returning to consideration of S

0

B

, the

consequences of which have been ignored so far. A full computation is

quite technical and lengthy, and we will be satis�ed here by highlighting

some essential features, and refer the reader to the original literature

for further details [401, 402]. Before outlining the calculation, let us

describe the consequences of S

0

B

in simple physical terms. There are

important results that emerge:

(i) All of the results above on the nature of the quantum critical point,

and on the crossovers in its vicinity on both the N�eel ordered and quan-

tum paramagnetic side remain unchanged [356, 440, 97].

(ii) On certain lattices, and for certain values of S, a new spontaneously

broken lattice symmetry emerges everywhere in the quantum param-

agnet [401] (spin rotation invariance remains unbroken in the quantum

paramagnet, and there is no change in the structure of the N�eel state).

This broken symmetry is associated with the appearance of spin-Peierls

order, which we will describe momentarily. It is believed that the spin-

Peierls order parameter does not play an essential role in the quantum

critical point noted in (i), and that its 
uctuations only become impor-

tant at su�ciently low energies and long distances so as not to modify

the crossovers of the quantum rotor model computed in Part 2. To
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2S (mod 4) = 1,3

2S (mod 4) = 0

or

2S (mod 4) = 2

Fig. 13.2. Quantum paramagnetic ground states of the weakly frustrated

square lattice antiferromagnet as a function of 2S(mod 4). The values of

P

ij

on the nearest neighbor links are schematically indicated by the di�erent

kinds of lines on the links; those on thick lines are larger than those on the

thin lines, and weakest are on the empty links.

describe the spin-Peierls order, consider the quantity

P

ij

=

D

^

S

i

�

^

S

j

E

: (13.62)

Note that P

ij

is a scalar under spin rotations, and so a non-zero value

does not break a spin rotation symmetry. The Hamiltonian H

S

in (13.1)

is also invariant under a group of lattice symmetries (involving lattice

rotation, re
ection and translations), and the values of the P

ij

for all

pairs sites i; j should, in general, also respect these symmetries. A spin-

Peierls state is one in which the values of P

ij

break a lattice symmetry;

this broken symmetry will be observable experimentally in lattice distor-

tions whose pattern will re
ect that in P

ij

|the distortion arise from the

coupling between the spin exchange energy and phonon displacements

which have not been included in the Hamiltonians we are considering

here. For the case of a square lattice with �rst and second neighbor in-

teractions, the quantum paramagnet with J

2

=J

1

just above J

c

possesses

spin-Peierls order of the type shown in Fig 13.2. For S = 1=2, like values

of P

ij

line up in columns or plaquettes which clearly break symmetry
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of rotation by 90 degrees about each lattice point; the ground state is

four-fold degenerate, and a similar spin-Peierls ordering is expected for

all half-integral S. If it was possible to obtain a quantum paramagnet

for S = 1 (or other odd integer S) by a continuous transition from a N�eel

state, then it is predicted to have a two-fold degenerate ground state,

with the P

ij

on the horizontal bonds di�ering from those on the vertical

bonds (see Fig 13.2). Finally, only for even integer S, is the paramagnetic

state non-degenerate and breaks no lattice symmetry [10, 11]. Related

results exist for quantum paramagnetic states accessed by a continuous

transition from other collinear states on the square or other lattices. In

all cases there are special values of S for which the quantum paramag-

net is non-degenerate and has no spin-Peierls order; these special values

extend to all values of S only for lattices with small symmetry groups.

Let us , �nally, consider the complete evaluation of S

0

B

, and discuss its

relationship to the spin-Peierls ordering just described. We will consider

the case of the square lattice with nearest neighbor exchanges, and pos-

sible further neighbor exchanges which do not destroy the collinear, two

sublattice ordering of the classical N�eel state. We have already argued

at the beginning of this subsection that S

0

B

vanishes for smooth space-

time con�gurations of n(x; �). We should therefore consider singular

con�gurations, and for the case of 3-component vector order parameter,

the only topologically stable possibility is the so-called `hedgehog' sin-

gularity [205]. This is a singularity occurring at point in spacetime and

corresponds to a tunneling event in which the `Skyrmion number', Y , of

a given time slice of n(x; t) changes. The latter is de�ned by the spatial

integral

Y (�) =

1

4�

Z

d

2

xn �

�

@n

@x

1

�

@n

@x

2

�

: (13.63)

Compare (13.63) to the topological � term in d = 1 of (13.60): the two

expressions are identical except that we now have an integral over space

only, while earlier we had a spacetime integral. By the same arguments

as made below (13.60), Y is an integer for periodic boundary condi-

tions in space. Let us describe a hedgehog tunneling event in which Y

changes from 1 to 0, in a pictorial language used by Haldane [205]. As

below (13.60) we can represent a con�guration with Y = 1 as an elas-

tic sheet (now representing space, rather than spacetime) wrapped on

a sphere. In reality, the spins lie on a lattice, and so the elastic sheet

has a �ne square mesh on it. Now imagine a tunneling event in which

one square on the mesh expands and allows the sphere to pass through;
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the resulting con�guration will have its Y changed to 0. It remains to

evaluate the summation in (13.53) for the evolution of n(x; �) just de-

scribed. Actually, we cannot consider hedgehog tunneling events singly,

as then the periodic boundary conditions in � , required for a meaning-

ful evaluation of (13.53), will not be satis�ed. We therefore consider a

sequence of events at well separated times, centered at the midpoints

of plaquettes labeled a, and involving the change in Skyrmion number

�Y

a

such that

P

a

�Y

a

= 0. These events are to be considered as saddle

points in the evaluation of the coherent state path integral of the lattice

antiferromagnet: the con�guration of n(x; �) at the saddle point mini-

mizes the action, and, provided the hedgehogs are well separated, can

reasonably be expected to have four-fold rotational symmetry about the

plaquette a around which the tunneling occurs. As at the beginning of

Section 13.3.1.1, let us write S

0

B

as

S

0

B

= S

X

i

�

i

A

i

; (13.64)

where A

i

is the contribution of site i. Now we can evaluate A

i

by

following the area swept out on the unit sphere by each site on the

elastic sheet during the tunneling event: from this it is simple to see

the following important intermediate result|the lattice con�guration of

A

i

has a vortex of strength 4��Y

a

around plaquette a. As the sum in

(13.64) cannot change from smooth changes in the lattice con�guration

of A

i

, we need only take a representative con�guration which has the

proper vortex singularities; for instance, we can take

A

i

= 2

X

a

�Y

a

arctan

�

x

i1

�X

a1

x

i2

�X

a2

�

; (13.65)

where x

i1;2

are the components of the lattice points x

i

, and X

a

is the

position of the center of plaquette a. We have to insert (13.65) into

(13.64) and evaluate the sum over i. This is a mathematical step, and

the details are given by Haldane [205]: it is not di�cult to see that the

result takes the form

S

0

B

= i�S

X

a

�Y

a

�

a

: (13.66)

The values of the �

a

depend upon the co-ordinates of plaquette a; a

number of choices for these values are possible, but e

�S

0

B

remains the

same provided

P

a

�Y

a

= 0. A particular choice is �

a

= 0; 1; 2; 3 if the

co-ordinates X

a

are (even,even), (even,odd), (odd,odd), (odd,even).

Now a last step remains: we have to sum over all possible hedgehog
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events, while including the phase factors arising from e

S

0

B

with each such

event. Refs [401, 402] showed how such a summation could be carried

out systematically in a certain large N expansion: describing this here

would take us too far a�eld, and we refer the reader to Ref [402] for fairly

explicit details. The hedgehog events are completely suppressed by the

action arising from S

n

for g < g

c

, and therefore have no signi�cant

consequence for the N�eel phase. In contrast, for g > g

c

, these events

proliferate, and it was shown in the quoted papers how the Berry phases

in (13.66) necessarily led to a spontaneously broken symmetry and the

appearance of the spin-Peierls order that has already been described.

Note that for S even integer, (13.66) is always an integral multiple of

2�i, and so S

B

has no e�ect|the properties in this case are therefore

the same as the rotor model, and there is no spin-Peierls order [10].

The reader may object that the above arguments for the ubiquity of

spin-Peierls order in collinear S = 1=2 antiferromagnets rely on theo-

ries obtained in a semiclassical large S limit, and could possibly break

down at small S. This issue has been addressed by studies designed

to directly study S = 1=2 quantum antiferromagnets either by phe-

nomenological [276, 412] or large N approaches [400]. Neighboring spins

are assumed to form singlet bonds in pairs, and then the low-lying, spin-

singlet excitations arise from resonance between di�erent arrangements

of the bonds (the `resonating valence bond' picture [21, 41]). From both

approaches, the so-called quantum dimer model [412] appears as an ef-

fective Hamiltonian for the low energy spin-singlet states. This latter

model can be studied quite reliably by a series of duality transforma-

tions [547, 402, 163, 435] and an `instanton' gas model emerges which

is, quite remarkably, equivalent to the hedgehog gas model obtained

above from a semiclassical perspective. In particular, each instanton

has a Berry phase which is given precisely by (13.66). In this con-

text, the phases in (13.66) are a consequence of the constraint that each

S = 1=2 spin can form a valence bond with exactly one of its neigh-

bors, whereas, here we obtained (13.66) from a very di�erent coherent

state path integral. The identity of these two distinct approaches rein-

forces our con�dence in the correctness of (13.66), and to the presence

of spin-Peierls order for S = 1=2, which follows quite robustly [402] from

it. The quantum dimer model has also been examined in exact diago-

nalization studies, and again the evidence for spin-Peierls order is quite

convincing [305].
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13.3.2 Non-collinear ordering and decon�ned spinons

We turn to consideration of quantum antiferromagnets which have more

complicated ordered magnetic states than those described so far. We

will consider models (13.1) on non-bipartite lattices, or with further

neighbor interactions so that simple collinear states are not likely to be

the ground states. Throughout, we will only be considering states which

do not have a macroscopic magnetic moment, i.e., the expectation value

of

P

i

^

S

i

in any low-lying state is not of the order of the number of

sites in the system. Such states are expected to be preferred in models

with all J

ij

< 0. Also we will only consider the case of d = 2 here,

as d = 1 antiferromagnets are better treated by the methods of the

following chapter.

The simplest, and most thoroughly studied example of a non-collinear

antiferromagnet is the triangular lattice with a nearest-neighbor antifer-

romagnetic exchange. In the limit S !1, the classical ground state is

easy to work out: it is characterized by the expectation value

D

^

S

i

E

= S

�

n

1

cos(

~

Q � ~x

i

) + n

2

sin(

~

Q � ~x

i

)

�

; (13.67)

where the ordering wavevector

~

Q = (4�=a)(1=3; 1=

p

3) on a triangu-

lar lattice with (a; 0; 0) one of the vectors connecting nearest-neighbor

lattice sites, and n

1;2

are arbitrary vectors in spin space satisfying

n

2

1

= n

2

2

= 1 ; n

1

� n

2

= 0 (13.68)

These constraints de�ne two orthogonal unit vectors, and each such pair

de�nes a di�erent classical ground state. This is a key di�erence from

the collinear states in Section 13.3.1.2, where only a single unit vector

was su�cient to characterize the ground state, as in (13.61). Alterna-

tively stated, the order parameter characterizing the broken symmetry

in the classical ground state is a pair of orthogonal vectors [206, 128].

One possible ground state is shown in Fig 13.3, for the case where n

1

,

n

2

lie in the plane of the lattice. Other antiferromagnets with coplanar

ordering in their classical ground states can be treated in an essentially

identical manner. Another important example studied in the literature

is the square lattice antiferromagnet with �rst, second, and third neigh-

bor exchanges (the J

1

-J

2

-J

3

model). For a range of parameters this

model has an incommensurate spiral ground state: such an ordering is

described as in (13.67), but the wavevector

~

Q is no longer pinned at

a precise value, and varies continuously as the values of exchange con-

stants are changed. As we move from site to site in the direction

~

Q the
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Fig. 13.3. Magnetically ordered ground state on the triangular lattice. The

spins have been taken to lie in the plane of the triangular lattice, but this need

not generally be the case.

spin orientation rotates by some irrational angle in the plane de�ned by

n

1

and n

2

. Finally antiferromagnets in which the spin arrangement is

not even coplanar but genuinely three-dimensional can be treated using

similar methods, but will not be considered here.

Instead of working with vectors n

1

, n

2

which satisfy the constraints

(13.68), it is convenient to introduce an alternative parameterization

of the space of ground states. It takes 6 real numbers to specify the

two vectors n

1

, n

2

, and the 3 constraints (13.68) reduce the degrees of

freedom to 3. We can use these 3 real numbers to introduce two complex

numbers z

1

, z

2

subject to the single constraint

jz

1

j

2

+ jz

2

j

2

= 1: (13.69)

We relate these numbers to n

1

, n

2

by [24, 98]

n

2�

+ in

1�

=

2

X

a;b;c=1

"

ac

z

c

�

�

ab

z

b

; (13.70)

where � = x; y; z, �

�

are the Pauli matrices, and "

ab

is the second-

rank antisymmetric tensor "

12

= �"

21

= 1, "

11

= "

22

= 0. The reader

can check that the parameterization (13.70) for n

1;2

automatically sat-

is�es (13.68) provided the single constraint (13.69) holds. So we have

succeeded in reducing the number of constraints down from 3 to 1. How-

ever the mapping from z

1;2

to n

1;2

is not one-to-one but two-to-one; the
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two-fold redundancy is apparent from (13.70) as z

a

and �z

a

correspond

to precisely the same n

1;2

, and therefore the same spin con�guration;

this redundancy will be crucial to our subsequent considerations. To

describe it further, let us decompose z

a

into its real and imaginary parts

z

1

= m

1

+ im

2

; z

2

= m

3

+ im

4

: (13.71)

Then the order parameter becomes a 4-component, real vector m

�

(� =

1; 2; 3; 4) and (13.69) translates into the constraint that this vector has

unit length (of course, there is no reason the e�ective action for m

�

should be invariant under O(4) rotations in this space{the underlying

symmetry is always O(3)). The identity of z

a

and �z

a

means that m

�

is

a headless vector, much like a nematic liquid crystal, which is described

by a headless 3-vector.

We can proceed to examine the quantum 
uctuations about the above

classical states by precisely the same strategy as that followed in Sec-

tion 13.3.1.2. We allow n

1;2

, and therefore z

a

, to be slowly varying

functions of spacetime. We also introduce a slowly varying uniform mag-

netization �eld L(x; t) such that the spatial integral over L is precisely

the total magnetization. Then, following (13.48) we parameterize

N(i; �) =

�

n

1

(x

i

; �) cos(

~

Q � ~x

i

) + n

2

(x

i

; �) sin(

~

Q � ~x

i

)

�

�

p

1� v

2

L

2

(x

i

; �) + vL(x

i

; �); (13.72)

where v is the volume per site. This is to be inserted in the coherent

state path integral of H

S

in (13.1) and the result expanded in gradients.

Finally the uniform magnetization variable L is to be integrated out as

below (13.56). The steps are similar to those in Section 13.3.1.2 and will

not be explicitly carried out. Rather, let us try to anticipate the form

of the answer on general symmetry grounds.

We list the constraints that must be obeyed by the �nal e�ective

action:

(i) We must clearly require invariance under spin rotations. These are

realized by the global SU(2) transformation

�

z

1

z

2

�

! U

�

z

1

z

2

�

�

�

� �

��

�

�

�

��

z

1

z

2

�

(13.73)

where � and � are complex numbers satisfying j�j

2

+ j�j

2

= 1. Applying

this to (13.70), we see that this performs the rotation n

1;2�

! R

��

n

1;2�

where

U

y

�

�

U = R

��

�

�

(13.74)
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(ii) Next, we consider the consequences of lattice translations. Any spa-

tial con�guration of n

1;2

(x; �) should have its energy unchanged under

translation by a lattice vector ~y. By combining (13.70) with (13.72) we

see that such a translation is realized by a simple overall phase change

of the z:

z

a

! e

�i

~

Q�~y=2

z

a

: (13.75)

Note that this transformation is not a special case of (13.73), which was

restricted to unitary matrices with unit determinant. For the case of

the triangular lattices (13.75) requires that the action be invariant un-

der multiplication of z

a

by the cube roots of unity. For incommensurate

spiral states, by di�erent choices of ~y we see that (13.75) requires invari-

ance under multiplication of z

a

by an arbitrary U(1) phase factor.

(iii) Finally, let us recall the two-fold redundancy in the mapping from

z

a

to the n

1;2

discussed below (13.70). The change in sign of z

a

can

vary from point to point in spacetime with no consequence for the n

1;2

:

therefore, we require invariance under the discrete Z

2

gauge transforma-

tion

z(x; �)! �(x; �)z(x; �) (13.76)

where �(x; �) = �1 but can otherwise vary arbitrarily. In the naive

continuum limit, the gauge nature of the transformation (13.76) does not

impose any additional constraints beyond those arising from a constant

�. However, the theory has to be regularized at short scales, and the

Z

2

gauge symmetry does impose additional constraints on any e�ective

lattice action. Moreover, the invariance (13.76) will also play a crucial

role in the nature of the possible topological defects.

Let us write down the simplest action consistent with the above con-

straints in the naive continuum limit. Up to second order in spatial

gradients, there are only two independent terms: jrz

a

j

2

and jz

�

a

rz

a

j

2

(a third possibility, j"

ab

z

a

rz

b

j

2

satis�es a simple linear relation with

these two). Identical considerations also apply to the terms with two

temporal gradients. We are therefore led to the following e�ective ac-

tion for the z

a

, which plays the role of S

n

in Section 13.3.1.2

S

z

=

Z

d

2

xd�

X

�=~x;�

1

g

�

�

j@

�

z

a

j

2

+ 


�

jz

�

a

rz

a

j

2

�

(13.77)

where g

x

, g

�

, 


x

and 


�

are coupling constants. In addition, as in

Section 13.3.1.2, there could be Berry phases, associated with singular
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con�gurations of the z

a

. These have to be analyzed on a lattice-by-lattice

basis and are not completely understood.

However, even at the level of the action S

z

, and ignoring possible

Berry phases, open questions remain (in contrast, the action S

n

is be-

lieved to be quite thoroughly understood). There are vexing di�erences

between di�erent ways of analyzing S

z

: renormalization group analyses

using expansions in (d � 1), (3 � d), or the inverse of the number of z

a

components, and numerical simulations[122, 25]. There is little doubt

that the fate of the Z

2

gauge symmetry (13.76) plays a crucial role in

these di�erences, as the di�erent approaches treat it in quite inequiva-

lent manners. In particular, the system allows a Z

2

vortex excitation,

and the nature of the quantum paramagnet depends upon whether such

vortices proliferate or are suppressed. Because of the importance this

vortex, let us describe its structure more carefully. The vortex is best

visualized in terms of the headless vector m

�

: as one circles the core of

the vortex, m

�

rotates by 180 degrees about a �xed axis orthogonal to

m

�

. So upon returning to the original point, m

�

has now turned into

�m

�

, but this is acceptable as the overall sign of m

�

is not signi�cant

(in mathematical terms, the order parameter m

�

belongs to the space

S

4

=Z

2

, and the vortex is associated with its �rst homotopy group Z

2

).

An especially clear discussion of such vortices, and their relationship to

the Z

2

gauge symmetry has been given by Lammert et al. [289] in the

context of nematic liquid crystals, and the reader is urged to consult

their paper.

We will not survey all earlier approaches to the analysis of S

z

here,

but highlight a promising scenario which has some striking consequences

for the quantum paramagnet. This scenario emerged �rst in a direct

large N study [403, 436, 419] of the quantum antiferromagnet (13.1)

on frustrated lattices, and related results emerge from studies of the

continuum theory S

z

in an expansion in the inverse of the number of z

a

components, or in an expansion in (d�1) [32, 98, 33, 101]. There are two

phases: a magnetically ordered phase and a quantum paramagnet, and

these are separated by a second order quantum phase transition. The Z

2

vortices are obviously suppressed in the magnetically ordered phase by

the non-zero spin sti�ness, but they remain suppressed in the quantum

paramagnet, as is also found to be the case in the corresponding phases

of the nematic liquid crystal [289]. The physical properties of both

phases can be rapidly understood by considering the case 


�

= 0 in

(13.77), although this special value will not modify the general form of

the following results. For 


�

= 0, we insert (13.71) into (13.77), and see
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straightforwardly that the action S

z

is symmetric under O(4) rotations

of the m

�

, and becomes precisely equivalent to the N = 4 case of the

quantum rotor model S

n

studied intensively in Part 2. The properties of

S

z

therefore follow directly from the results of Part 2. The magnetically

ordered phase has 3 = 4�1 linearly dispersing spin wave excitations, and

magnetic order disappears at any non-zero temperature. The quantum

paramagnetic phase has an energy gap, �

+

, and the excitations are built

out of the Fock space of a 4-fold degenerate particle.

Despite the mapping above to Part 2, there is a crucial distinction

in the physical interpretation of the structure of the quantum param-

agnet. Its particle excitations are the bosonic quanta of the z

a

�eld,

and the transformation (13.73) under spin rotations makes it clear that

these bosons carry spin S = 1=2. (This accounts for a 2-fold degeneracy

of the particle states; an additional factor of 2 comes from account-

ing for the particle and anti-particle states). This should be contrasted

with the S = 1 particle that was found in the quantum paramagnetic

with collinear correlations in Section 13.3.1.2. These S = 1=2 bosonic

particles are labeled `spinons': we can view the S = 1 particle as the

bound state of two S = 1=2 particles, and therefore a quantum transi-

tion from a quantum paramagnet with collinear correlations to one with

non-collinear correlations can be viewed as one of the decon�nement

of spinons: a simple theory for such a transition has been discussed in

Refs [403, 436, 419]. Here let us discuss an important physical property

of a quantum paramagnet with decon�ned spinons: we compute the dy-

namic susceptibility at the non-collinear ordering wavevector, de�ned

by

�(k; i!

n

)�

��

=

v

M

X

i;j

Z

1=T

0

d�

D

^

S

i�

(i�)

^

S

j�

(0)

E

e

�i((

~

k+

~

Q)�(~x

i

�~x

j

)�!

n

�)

:

(13.78)

Using (13.70) and (13.72) we see that (ignoring the contribution of L,

which will only renormalize a pre-factor that can absorbed into a redef-

inition of the quasiparticle amplitude A):

�(k; i!

n

) =

S

2

6

2

X

a;b=1

Z

d

2

x

Z

1=T

0

hz

a

(x; i�)z

b

(x; i�)z

�

a

(0; 0)z

�

b

(0; 0)i :

(13.79)

So � is given by the propagator of two spinons, rather than the single

particle propagator which appeared in (5.2). As discussed above, the z

quanta of the quantum paramagnet have a quasiparticle pole at T = 0 as
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in (4.99) or (5.30); the contribution of this pole leads to the expression

�(k; !

n

) = A

2

S

2

�(k; !

n

); (13.80)

where the two-particle propagator � was discussed in (7.42). At T = 0,

taking the imaginary part of (7.46) we obtain

Im�(k; !) =

A

2

S

2

8c

2

sgn(!)

p

!

2

� c

2

k

2

�

�

j!j � (c

2

k

2

+ 4�

2

+

)

1=2

�

; (13.81)

where � is the unit step function. So there is no pole in �(k; !) as

there was for the case of a quantum paramagnet with collinear spin

correlations; rather there is a branch cut at frequencies greater than

(c

2

k

2

+4�

2

+

)

1=2

, which corresponds to the threshold for the creation of

a pair of spinons. This branch cut is a characteristic property of the

decon�nement of spinons in a quantum paramagnet.

We emphasize that the suppression of the Z

2

vortices was crucial to

the existence of the free bosonic spinons in this quantum paramagnet.

In the absence of such vortices, it is possible to consistently assign a

global phase to a spinon wavefunction without any sign ambiguities.

The wavefunction of a spinon changes in sign upon transport around

a Z

2

vortex, and so spinons are expected to con�ne into integer spin

excitations when such vortices proliferate [403, 436].

We close this subsection by noting some related issues that have been

discussed in the literature.

A spinon-based approach can also be used to describe the collinear

antiferromagnets of Section 13.3.1. One obtains the action (13.77),

but at the special point 


�

= 1, where the reader can easily check

that it is invariant under the U(1) gauge transformation z

a

(x; �) !

e

i�(x;�)

z

a

(x; �). This theory has been analyzed by a number of meth-

ods [529, 112, 401, 402, 70, 100] with the conclusion that the spinons

are con�ned , and the resulting spectrum is in agreement with the form

already obtained in Section 13.3.1 by other methods.

Another possible quantum paramagnetic state of frustrated antiferro-

magnets is the \chiral spin liquid" [260, 292, 526, 207] (and the related

`
ux phase' [13]). In this state, the local spin correlations are not only

non-collinear, but also non-coplanar, and the ground state breaks parity

and time-reversal invariance. Classically, it is quite di�cult to con-

struct antiferromagnets with non-coplanar spin ordering in the ground

states: some rather intricate lattices or multiple spin couplings are usu-

ally necessary. The chiral spin liquid would then be accessed by quan-

tum disordering transition from such a magnetically ordered state. The
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interest in such a state has been driven primarily by the fact its ex-

citations have rather remarkable properties: they are S = 1=2 spinons

which obey fractional statistics. Furthermore, it has been predicted that

doping such a state would lead to a new type of `anyonic' superconduc-

tivity [291, 292, 89]. However, no experimental realization of this exotic

possibility has so far been found. There have also been assertions [292]

that S = 1=2 spinon excitations of any two dimensional quantum para-

magnet should obey fractional statistics, but this does not agree [436]

with the bosonic spinon states discussed in the body of this section.

13.4 Partial polarization and canted states

This section will interpolate between the ferromagnetic states studied in

Section 13.2, with maximum uniform spin polarization in their ground

states, and the antiferromagnets of Section 13.3, which had a thermo-

dynamically negligible spin polarization. One way to do this would be

examine the ground states of models H

S

in (13.1) at H = 0, but with

a set of J

ij

which can take both signs. Models of this type were exam-

ined in Ref [438], and it was argued that they could be described by a

ferromagnetic extension of the rotor models studied in Part 2. The prop-

erties of such models are quite intricate, and we refer the reader to the

original paper for further details. Here, we shall look at a closely related

model whose properties are signi�cantly simpler to delineate. We will

begin with an antiferromagnet with all J

ij

< 0, and attempt to force in

a macroscopic moment by placing it in a strong uniform �eld H. So the

uniform magnetization will not arise spontaneously from ferromagnetic

exchange interactions, but will instead be induced by an external �eld.

This will cause important di�erences in nature of certain spin-wave ex-

citations, which are no longer required to be gapless due to the explicit

breaking of rotational invariance in the Hamiltonian. Nevertheless, nu-

merous other features will be very similar to the far more complicated

models considered in Ref [438]. Further, the case of an antiferromag-

net in a strong uniform �eld is of direct physical importance, having

been investigated in several recent experiments, as we shall discuss in

Section 13.5.

The low energy properties of an antiferromagnet in a �eld H are de-

scribed by the action S

n

in (13.58) or (5.16). So far, analyses of these

models has been restricted to H = 0, and to linear response to a weak

H. Here, we will look at the full non-linear response to a strong H. It

should be noted here that, in d = 1, closely related results can also be



356 Heisenberg spins: ferromagnets and antiferromagnets

obtained by the bosonization technique of Chapter 14 [372], while mak-

ing no reference to the rotor model|we will not follow such an approach

here.

We prefer to begin our analysis by placing the continuum model S

n

on a lattice at some short distance scale, and working with the discrete

lattice Hamiltonian. This is the inverse of the mapping carried out in

Chapter 5, and we therefore obtain the rotor model Hamiltonian H

R

in

(5.1):

H

R

=

Jg

2

X

i

^

L

2

i

� J

X

hiji

^
n

i

�
^
n

j

�H �

X

i

^

L

i

: (13.82)

The lattice sites in this rotor Hamiltonian are not to be identi�ed with

the lattice sites of H

S

in (13.1); rather each rotor is an e�ective degree

of freedom for a cluster of an even number of spins in the original model.

Each such cluster will have a spin singlet ground state forH = 0, as does

the on-site Hamiltonian for each rotor in (13.82) - see (2.71). The rotor

also has an in�nite tower of states with increasing angular momentum in

(2.71); in contrast a cluster of p Heisenberg spins with spin S can have a

maximum total angular momentum pS. This di�erence will have some

signi�cant consequences for the topology of the phase diagram, but will

leave many essential features unaltered{we will comment on this issue

later.

We proceed to understanding the properties of H

R

in the remainder of

this section. The analysis will be quite similar to that discussed for the

Boson Hubbard model in Chapter 10, and the results bear some similar-

ity to those in Ref. [258]; indeed, we will �nd that the phase diagram of

H

R

is quite similar to that of H

B

in (10.4), and the universality classes

of the quantum phase transitions reduce either to the models studied

in Part 2, or to those in Chapter 11. This similarity is not surprising

at one level: the model H

R

in the presence of a non-zero H only has

a global U(1) symmetry corresponding to rotations about an axis par-

allel to the �eld (rotations about all other axes are not allowed by the

non-zeroH), and the model H

B

also has only a U(1) symmetry. (In the

models considered in Ref [438], uniform moments appear spontaneously

due to ferromagnetic exchange in a model with full O(3) symmetry, and

this reasoning does not hold: however the similarity to H

B

persists,

with many (but not all) quantum critical points belonging to the same

universality classes as those of H

B

.)

Most of the physics of H

R

already becomes apparent in a mean-�eld

theory similar to that in Section 10.1. As in (10.7), we make a mean-
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�eld ansatz forH

MF

as the sum of single-site Hamiltonians with initially

arbitrary variational parameters:

H

MF

=

X

i

 

Jg

2

^

L

2

i

�H �

X

i

^

L

i

�N �
^
n

i

!

: (13.83)

Here the N are a set of three variational parameters which represent the

e�ects of the exchange J with nearest neighbors in mean-�eld theory;

they play a role similar to that of the complex number 	

B

in Sec-

tion 10.1. We have assumed that the N are site-independent and are

therefore excluding the possibility of states with spatial structure: this

is for simplicity and it is not di�cult to extend our analysis to allow for

broken translational symmetries in H

R

.

Now the analysis proceeds as in Section 10.1: determine the ground

state wavefunction of H

MF

, and optimize the expectation value of H

R

in this wavefunction towards variations in N. This was done numeri-

cally, and leads to the phase diagram in Fig 13.4; we will discuss the

properties of each of the phases in turn, and then consider the nature of

the transitions between them.

13.4.1 Quantum paramagnet

The optimum value of the variational parameter is N = 0. For this

value, H

MF

is exactly diagonalizable{the eigenstates are simply the ro-

tor eigenstates j`;mi of (5.4) and have eigenvalues Jg`(`+ 1)=2�Hm.

The quantum paramagnet appears when parameters are such that the

minimum energy state has ` = m = 0: this happens for small H=J and

large g. This quantum paramagnet is precisely the corresponding state

of the rotor model studied in Part 2{the �eld H couples only to the

total spin which is identically zero in the spin singlet ground state: as

a result the wavefunction and all equal time correlations are una�ected

by a non-zero H. The energy of the spin triplet particle excitations

does change as was shown in (5.6), but their wavefunctions also remain

una�ected.

13.4.2 Quantized ferromagnets

These phases also haveN = 0, and so the eigenenergies ofH

MF

are those

listed above. The minimum energy state has m = `, and the di�erent

quantized ferromagnets are identi�ed by the di�erent positive integer

values of ` as shown in Fig 13.4. The analogy between these phases and
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Canted

Q.F. 3

Q.F. 2

Quantum
Paramagnet

Q.F. 1

Z/g

H/Jg

Neel

M

Fig. 13.4. Mean �eld phase diagram of H

R

(in (13.82)), the O(3) quantum

rotor model in a �eldH. The notation Q.F. ` refers to a quantized ferromagnet

with h

^

L

z

i = `. Compare with the phase diagram of the boson Hubbard model

in Fig 10.1: in the latter case, there is no special meaning to the vertical co-

ordinate = 0, and the vertical axis is unbounded below. The positions of the

phase boundaries follow from (13.85). The multicritical point M is precisely

the critical point of the O(3) quantum rotor model studied in Part 2.

the Mott-insulating phases of Section 10.1 should be clear: the boson

number n

0

corresponds to the integer `. We argued in Section 10.1

that the quantization of n

0

was not an artifact of mean �eld theory

but an exact statement about the full interacting model. Precisely the

same arguments apply here to h

^

L

z

i (we are assuming H is oriented

in the z direction), as the total angular momentum in the z direction

commutes with H

R

. Such quantized ferromagnetic phases also appear in

the models of Ref [438] where ferromagnetism was induced by exchange

interactions: in this case complete rotational symmetry of the underlying

Hamiltonian implies that the there are gapless spin-wave excitations of

the type considered in Section 13.2 with dispersion "

k

= (�

s

=M

0

)k

2

.

In the present model H

R

the spin wave modes acquire a gap from the



13.4 Partial polarization and canted states 359

external �eld, and we have "

k

= (�

s

=M

0

)k

2

+H . In these respects these

quantized ferromagnets are identical to the fully-polarized ferromagnets

of Section 13.2: we simply have to set M

0

equal to the actual quantized

value of the ground state magnetization density.

Let us also note some aspects of the interpretation of these quantized

ferromagnet phases for underlying spin models like H

S

. We noted above

that each rotor was an e�ective degree of freedom for an even number,

p, of Heisenberg spins. Such a cluster has maximum spin pS, and so

the quantized ferromagnets with ` > pS clearly cannot exist, and are

artifacts of the mapping to the rotor model which introduced an in�nite

tower of states on each site. Also, for some antiferromagnets, making

clusters of p spins may involving reducing the symmetry of the under-

lying lattice. In this case the quantized ferromagnets with 0 < ` < pS

necessarily involve a spontaneously broken translational symmetry: each

spin has an average fractional moment of `=p and this can be quantized

only if p spins spontaneously group together and carry a total moment

` together. This spontaneously broken symmetry will e�ect the critical

theory of the transition out of the quantized phase, but we will not dis-

cuss this further here. Finally, the rotor with ` = p is a fully polarized

ferromagnet which can exist without any broken translational symmetry.

It should also be noted that very similar considerations apply for the

case of p odd: then we have to work with rotors which carry half integral

angular momenta [459, 438].

13.4.3 Canted and N�eel States

These states both haveN 6= 0, and are thus the analogs of the super
uid

state of the boson model of Section 10.1. The N�eel state occurs precisely

at H = 0, and the full rotational invariance of the Hamiltonian then

implies that the direction of N is immaterial. The canted state occurs

at non-zero H. If we write H = He

z

, the numerical optimization of the

mean-�eld Hamiltonian (13.83) shows that the vector N prefers to lie

in the x-y plane; the direction within the plane is immaterial, re
ecting

the U(1) symmetry of the problem. This orientation of the N�eel order

parameter in a plane perpendicular to an applied uniform �eld is quite

generic, and the reasons for it will become more evident in Section 13.4.4

below. We choose N

x

6= 0 and N

y

= 0. The resulting canted state is

characterized by the non-zero expectation values

hn̂

x

i = N

x

=(JZ) 6= 0 h

^

L

z

i 6= 0; (13.84)
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H

< L  >z

1

2

3

Fig. 13.5. Schematic of the magnetization, h

^

L

z

i, as a function of the �eld H

for the rotor model (13.82). It is assumed that the value of Z=g in Fig 13.4

is small enough that a vertical line will intersect the Q.F. ` phases for ` � 3.

The magnetization is initially pinned at 0 when the system is in the quantum

paramagnet, and is subsequently pinned at ` in the Q.F. phases. The mag-

netization interpolates between these plateaus in the canted or `unquantized

ferromagnet' phase.

and all other components of
^
n and

^

L have vanishing expectation values.

The �rst relation in (13.84) should be compared with (10.9){its origin is

the same. Both non-zero expectation values in (13.84) vary continuously

as a function of J , g or H , and nothing is pinned at a quantized value;

as there is a non-zero, continuously varying ferromagnetic moment in

the canted phase, this is an example of an `unquantized' ferromagnet.

The results (13.84) also make the origin of term `canted' clear, as shown

in illustration within the canted region of Fig 13.6. In terms of the

underlying Heisenberg spins, a non-zero hn̂

x

i implies antiferromagnetic

ordering within the x direction in spin space, while a non-zero h

^

L

z

i

implies a uniform ferromagnetic moment in the z direction.

We show a plot of the H dependence of the T = 0 magnetization h

^

L

z

i

in Fig 13.5. Notice that there are plateaus in the magnetization while

the system is in the quantum paramagnetic or quantized ferromagnetic

phases. In between these phases is the canted phase, or the unquan-

tized ferromagnet, in which the magnetization continuously interpolates

between the quantized values.
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The excitation structure of the canted phase is easy to work out.

We simply follow the same procedure as that used to the N�eel state in

Section 5.1.2. Examining equations of the motion of small 
uctuations

about the ordered state one �nds a gapless spin wave excitations with

energy "

k

� k corresponding to rotations of the
^
n in the x-y plane.

For the case where the canted state appears in a model with full O(3)

symmetry, there is an additional gapless mode with dispersion "

k

�

k

2

[438].

The mean �eld boundary between the canted/N�eel states and the

quantized ferromagnets/quantum paramagnet can be computed ana-

lytically, using the same analysis leading up to (10.14) for the boson

model. We expand the ground state energy of the quantized ferro-

magnet/quantum paramagnet in powers of N

x

and demand that the

co-e�cient of the N

2

x

vanish. This leads to the analog of the condition

r = 0 with the expressions (10.15), (10.16); in the present situation we

�nd the condition

g

Z

=

`+ 1

(2`+ 3)(`+ 1�H=Jg)

�

`

(2`+ 1)(`�H=Jg)

1

(2`+ 1)(2`+ 3)(`+ 1 +H=Jg)

(13.85)

for the instability of the quantized ferromagnet/quantum paramagnet

with h

^

L

z

i = ` (the denominators in (13.85) are always positive over

the range of applicability for a given value of `). Simple application of

(13.85) led to Fig 13.4.

An important feature of the above results deserves special mention.

Notice that the only phase with a continually varying uniform magnetic

moment (an unquantized ferromagnet) is the canted phase. This phase

has a broken symmetry in the x-y plane and an associated gapless mode.

This result is believed [438] to be a general principle: phases with con-

tinuously varying values of a ferromagnetic moment must have gapless

spin modes in addition to the usual ferromagnetic spin-waves that are

present for the case of a spontaneously generated moment; moreover,

unlike the spin-waves, these gapless modes do not acquire a gap in the

presence of a uniform �eld H. In d � 2, for the rotor models considered

here, the gapless modes are associated with the broken symmetry lead-

ing to canted order in such phases. In d = 1, the analysis in Chapter 11

shows that the order in the x-y plane becomes quasi long-range but the

gapless mode survives.

(For completeness, we also note here another physical example of an
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unquantized ferromagnet: the Stoner ferromagnet [481] of an interacting

Fermi gas, in which there are two Fermi surfaces, one each for up and

down spins, with unequal Fermi wavevectors k

F"

6= k

F#

. The values of

k

F"

and k

F#

can vary continuously as the interaction strength is var-

ied (provided they are both non-zero), and so can the mean magnetic

moment. Consistent with the general principle above, in addition to

the ferromagnetic spin-waves, this system has low energy spin-
ip exci-

tations at �nite wave-vectors involving particle-hole pairs near the two

Fermi surfaces.)

13.4.4 Zero temperature critical properties

It is clear that the H = 0 transition between the quantum paramagnet

and the N�eel state is precisely the same as N = 3 model intensively

studied in Part 2; this critical point is denoted M in Fig 13.4. We will

show that the generic H 6= 0 transition between the quantized ferro-

magnet/quantum paramagnet and the canted state is in the universality

class of the dilute Bose gas �eld theory in (11.1), which was thoroughly

studied in Chapter 11. We will do this by examining the line of second

order transitions coming into the pointM ; the remaining portions of the

phase boundary can be analyzed in a similar manner. It should also be

noted that there are also special `particle-hole' symmetric points at the

tips of the lobes surrounding the quantized ferromagnet phases where

the z = 1 theory of Part 2 will apply, just as was the case for the Boson

Hubbard model in Sections 10.1 and 10.2.

The promised result is most easily established by using the `soft-spin'

theory of the point M studied in Chapter 8. In the presence of a �eld

H = He

z

the generalization of the N = 3 version of (8.2) is

S

�

=

Z

d

d

x

Z

1=T

0

d�

�

1

2

�

(@

�

�

x

� iH�
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+ iH�
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�

�

z

)

2

+ c
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~
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+
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2

o

(13.86)

The uniform magnetic moment density is given by

1

v

h

^

L

z

i = �

@F

@H

(13.87)

where v is the volume per rotor, and F is the free energy density asso-

ciated with the action S

�

.

Let us �rst discuss the mean �eld properties of S

�

, obtained by min-

imizing the action, while ignoring all spatial and time dependence of
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Quantum
Paramagnet

r

M

0
0

H

Neel

Canted

Fig. 13.6. Mean �eld phase diagram of S

�

(in (13.86)) at T = 0. The ar-

rows denote the relative orientation of the spins in the corresponding phases

of double layer systems, which map onto the rotor model as discussed in Sec-

tion 5.1.1.1; the �eld H is assumed to point towards the top of the page. The

multi-critical point M is the N = 3 case of the quantum critical point studied

in Part 2. Notice that the vicinity of M is similar to that in Fig 13.4.

�

�

; this will reproduce the structure in the vicinity of the point M in

Fig 13.4 obtained earlier using the mean-�eld Hamiltonian (13.83). No-

tice that the components �

x

, �

y

have a quadratic term with coe�cient

r �H

2

, while �

z

has the usual coe�cient r; so ordering is preferred in

the x-y plane, and this was the reason for the choice in the orientation

of the N vector in Section 13.4.3. For r � H

2

> 0, the ground state

has h�

�

i = 0, and is therefore in the quantum paramagnetic phase. For

r�H

2

< 0, the ground state has h�

�

i 6= 0 and in the x-y plane. This is

the C phase and the �elds have the expectation values

�

�

=

 

�

6(H

2

� r)

u

0

�

1=2

; 0; 0

!

1

v

h

^

L

z

i =

6H(H

2

� r)

u

0

; (13.88)

or any rotation of �

�

in the x � y plane. Notice that h

^

L

z

i vanishes

for H = 0, and therefore the line r < 0, H = 0 is the N�eel state.

The resulting mean �eld phase diagram is shown in Fig 13.6 and is

identical to the vicinity of the point M in Fig 13.4. Let us focus on the

vicinity of the generic transition between the quantum paramagnet and

the canted phase: this corresponds to the regime jr � H

2

j � jrj. In
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this region we can neglect �

z


uctuations and focus only on the �

x

+

i�

y

which is undergoing Bose condensation. Further, the second-order

time derivative in S

�

can be dropped as the low energy properties are

dominated by the more relevant �rst order time derivative that appears

by expanding the �rst two terms in S

�

. Making these approximations,

and de�ning

	 =

�

x

+ i�

y

p

H

; (13.89)

we see that S

�

reduces to

S

	

=

Z

d

2

x

Z

1=T
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�
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: (13.90)

This is precisely the theory (11.1), establishing the claim made at the

beginning of this subsection.

13.5 Applications and extensions

There has been a great deal of theoretical work on possible quantum

paramagnetic ground states of two dimensional, S = 1=2 Heisenberg

antiferromagnets. On the square lattice, we have already noted the

studies on the J

1

�J

2

and J

1

�J

2

�J

3

models which show clear evidence

for the existence of a quantum paramagnetic ground state in a window

around J

2

=J

1

� 0:5, J

3

= 0. Some of these studies [174, 173, 350, 388,

450, 304] also show reasonable evidence for the existence of columnar

spin-Peierls order of the type discussed in Section 13.3.1.2 and shown in

Fig 13.2, as was predicted from the Berry phase analyses of Refs [401,

402, 403, 436]. More recently, Zhitomirsky and Ueda have suggested

that the plaquette state in Fig 13.2 may be the lowest energy one: this

possibility was not thoroughly tested in the earlier work.

The weight of the evidence on the triangular lattice is that the model

with only nearest neighbor interactions has long range N�eel order of

the type shown in Fig 13.3 [94, 283, 50]; other types of magnetic or-

der appear upon including further neighbor exchanges [296]. However,

the introduction of multiple spin ring exchanges can induce quantum

paramagnetic ground states [346], and these are candidates for exhibit-

ing decon�ned spinon excitations in two dimensions. The latter case of
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multiple spin exchange appears to have an experimental realization in

experiments on an adsorbed

3

He layer on graphite [413].

The nearest neighbor S = 1=2 antiferromagnet on the kagome lat-

tice has also been intensively studied: here it is virtually certain that

the ground state is a quantum paramagnet with a gap towards excita-

tions with non-zero spin. However, there appear to be a large number

of low-lying, singlet excitations. These could possibly be described by

an e�ective quantum dimer model [412] and arguments have been ad-

vanced [419] that this model should have a gap on the kagome lattice.

The current situation, along with earlier references to the literature, has

been discussed by Waldtmann et al. [522].

The most precise study of the quantum critical point between an or-

dered N�eel state and a quantum paramagnet has been carried out by

Troyer et al. [497] on a depleted square lattice. All universal proper-

ties are in agreement with those of the O(3) quantum rotor model of

Part 2, supporting the irrelevancy of the Berry phase terms, discussed

in Section 13.3.1.2, for the critical phenomena.

An important experimental candidate for a gapped quantum param-

agnetic ground state in two dimensions in CaV

4

O

9

. The experimental

measurements [487] clearly indicate the presence of a spin gap, but there

remains a debate upon the nature of the microscopic spin Hamiltonian

needed to explain the observations [176, 384, 266].

The analyses of Section 13.4 should make it clear that the dilute Bose

gas quantum critical point of Chapter 11 describes the closing of a spin

gap of an antiferromagnet by a strong external magnetic �eld [448, 6,

7, 502, 470, 439, 90]. This critical point has been intensively studied

recently in spin ladder organic compound Cu

2

(C

5

H

12

N

2

)

2

Cl

4

[79, 80,

81, 209, 137]. The onset of magnetization plateaus at a �nite �eld (as in

Fig 13.5) is also described by the same quantum critical point, and such

plateaus have been observed recently in experiments on one-dimensional

spin chains [358, 463].

A novel realization of the d = 2 continuum quantum ferromagnets of

Section 13.2 is provided by magnetization studies of single layer quantum

Hall systems at �lling factor � = 1 [468, 145, 264, 265]. These are

electronic systems with a gap towards charged excitations, and a strong

ferromagnetic exchange between the electronic spins. As a result, the

low-lying spin excitations are well described by the continuum theory

(13.32). The magnetization of this system for di�erent T and H has

been measured in NMR [39] and optical [14, 326] experiments, and the

results have been interpreted by computations on (13.32) [26, 404, 491].
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Exciting recent developments have appeared in studies of double layer

quantum Hall systems, when two single layer systems in a ferromag-

netic quantum Hall state with a charge gap, are brought close to each

other [385, 377, 445, 378, 310]. There is an antiferromagnetic exchange

pairing between the layers [546], which suggests that we may consider

the two layers to be similar to the two sublattices of an antiferromag-

net, and that there is an e�ective rotor model description of the spin

excitations. Indeed, it has been argued [120, 121] that the system maps

precisely onto the model studied in Section 13.4. Detailed light scat-

tering studies have mapped out the phase diagram of the system [378],

and the results are consistent with Figs 13.4 and 13.6. Speci�c quan-

titative predictions for quantum critical behavior have been made in

Refs [120, 121, 498, 331, 431], and these and dynamical results like those

in Section 8.3 could be tested in future experiments.



14

Spin chains: bosonization

This chapter has two central aims. The �rst is to describe a particu-

lar class of S = 1=2 antiferromagnets in d = 1 and to understand their

properties in the context of the general discussion of antiferromagnets in

Chapter 13. The second is to introduce the technical tool of bosoniza-

tion, and to illustrate its utility in the solutions of the models noted.

The powerful bosonization method has been used extensively in recent

years to understand a wide variety of systems in one dimension. We shall

not attempt to survey this vast literature here, but refer the reader to

a number of available reviews: a description of some important current

topics appears in articles by Schulz [449] and A�eck [5]. However, most

of the basic ideas and general principles will make an appearance in our

treatment here. The author bene�ted from unpublished Trieste lecture

notes of T. Giamarchi in preparing this chapter.

The antiferromagnetic chain we shall study [202] has the Hamiltonian

H

12

= J

1

X

i

�

�̂

x

i

�̂

x

i+1

+ �̂

y

i

�̂

y

i+1

+ ��̂

z

i

�̂

z

i+1

�

+J

2

X

i

�

�̂

x

i

�̂

x

i+2

+ �̂

y

i

�̂

y

i+2

+ �̂

z

i

�̂

z

i+2

�

; (14.1)

where the �̂

�

i

are Pauli matrices representing a S = 1=2 spin at site i,

and the subscript 12 on H indicates the presence of �rst and second

neighbor interactions. For � = 1 this reduces to the S = 1=2 Heisenberg

Hamiltonian H

S

in (13.1), with �rst (J

1

> 0) and second (J

2

> 0)

neighbor exchange in d = 1, which was studied in the continuum limit

of the coherent state path integral in Chapter 13. We have introduced

the anisotropy parameter � to make contact with the quantum XX

chain studied in Sections 11.1 and 11.4 by rather di�erent methods; for

� = 0 and J

2

= 0, (14.1) reduces to the XX Hamiltonian in (11.5). We

367
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shall use these latter methods here, and show how they can be combined

with bosonization to examine the more general model (14.1). Recall that

the XX chain had a global U(1) symmetry, and an associated conserved

charge Q = (1=2)

P

i

�̂

z

i

: this U(1) symmetry is also present in H

12

for

general �. Only the point � = 1 has the full Heisenberg SU(2) symmetry.

We will begin by re-examining the XX model in Section 14.1, and

re-obtain the results of Section 11.4 by introducing the bosonization

method. The same method will be used to describe the phases and low

T properties of H

12

in Section 14.2. Finally in Section 14.3 we will

rectify an omission from Part 2: we will examine that N = 2 d = 1

quantum rotor model, and show how it can be understood by a simple

adaptation of the methods introduced in this chapter.

14.1 The XX chain revisited: bosonization

This section will examine the model H

12

at � = 0 and J

2

= 0. Then,

as noted earlier, H

12

reduces to the Hamiltonian H

XX

in (11.5). For

antiferromagnetic exchange J

1

> 0, we obtain H

XX

with a coupling

w < 0; it is somewhat inconvenient to work with a w < 0, but we can

map to w > 0 by changing the signs of the �̂

x

�̂

x

and �̂

y

�̂

y

terms in H

12

by rotating every second spin by 180 degrees about the z axis. We used

the Jordan-Wigner transformation to map H

XX

onto a model of free

spinless fermions, and with the staggered rotation, the transformation

(4.24,4.25) becomes

�̂

z

i

= 1� 2c

y

i

c

i

�̂

+

i

= (�1)

i

Y

j<i

�

1� 2c

y

j

c

j

�

c

i
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�

i

= (�1)

i

Y
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�

1� 2c

y

j

c

j

�

c

y
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:: (14.2)

Inserting (14.2) into (14.1) we �nd

H

12

= �

X
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(14.3)

So for J

2

= 0, � = 0 we see that H

12

reduces to the free fermion form

(11.6) of H

XX

with w = 2J

1

and � = 2w.

The spin correlations of H

XX

were examined in Section 11.4, and we
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were then especially interested in the quantum phase transition which

occurred when the density of fermions in the ground state went from

being pinned at zero to a non-zero value. As discussed in Section 11.1

and Fig 11.1, this transition occurred at � = 0. Here we are inter-

ested in the case � = 2w, when the density of fermions is non-zero and

large; by Fig 11.1 the fermion band is exactly half-�lled. So we are well

away from the quantum critical point of interest in Chapter 11, and are

solely interested in the �nite ground state fermion density region. This

places us exclusively within the Tomonaga-Luttinger liquid region of Sec-

tion 11.4.2: this is the region labeled \Fermi liquid" in Fig 11.2, which

applies to general d. We gave a complete derivation of the asymptotic

form of the T > 0, equal-time correlators of the Tomonaga-Luttinger

liquid region in Section 11.4.2, and then deduced the ground state cor-

relators in (11.84,11.85) by appealing to a mapping based on conformal

invariance. The analysis there was specialized to the case � > 0, but

j�j � w, but precisely the same methods also work for � = 2w. Us-

ing the same steps as those leading up to (11.85) (or to (4.112) for the

quantum Ising chain), we can obtain the following T = 0 correlators of

H

12

at � = 0, J

2

= 0 [333, 425]:

h�̂

x

i

�̂

x

i+n

i = h�̂

y

i

�̂

y

i+n

i = (�1)

n

8(G

I

(0))

2

(2�n)

1=2

as n!1; (14.4)

where the numerical constant G

I

(0) was de�ned in (4.68) and its value

was quoted above (4.111). The leading (�1)

n

prefactor is as expected

from the staggered spin correlations in an antiferromagnet; technically

it arises from the staggered rotation of the spins in (14.2). We can also

directly use the �rst mapping in (14.2) to obtain correlators of �̂

z

quite

simply:

h�̂

z

i

�̂

z

i+n

i = �

n;0

+ (1� �

n;0

)

�

�

2

�

2

n

2

+

2 cos(�n)

�

2

n

2

�

: (14.5)

This section will obtain the power-law decays in (14.4) and (14.5) by

the bosonization method [480, 492, 315, 314]. However, this approach

abandons attempts to keep track of most of the prefactors (only the pref-

actor of the non-oscillating 1=n

2

decay of the conserved z-component of

the spin in (14.5) will be obtained exactly). This `sloppiness' is compen-

sated by the important advantage that the method applies for non-zero

� and J

2

. Further, the validity of the conformal mapping between T > 0

and T = 0 correlators noted above will be explicitly demonstrated.

We begin by taking the continuum limit of H

12

in (14.3) at J

2

= � = 0
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in precisely the same manner as discussed in Section 11.2.2 for the `Fermi

liquid' region of Fig 11.2. With lattice spacing a, we introduce the

continuum Fermi �eld 	

F

(x; �) as in (4.39), and then parameterize it

in terms of left (	

L

) and right (	

R

) moving excitations in the vicinity

of the Fermi points as in (11.27): the fermion band is half-�lled, and

so in this case k

F

= �=a. The �elds 	

L;R

are described by the simple

Hamiltonian

H

FL

= �iv

F

Z

dx

�

	

y

R

@	

R

@x

�	

y

L

@	

L

@x

�

; (14.6)

which corresponds to the Lagrangean L

FL

in (11.28); the Fermi velocity

given by v

F

= 4J

1

a.

We will examine L

FL

a bit more carefully, and show, somewhat sur-

prisingly, that it can also be interpreted as a theory of free relativistic

bosons. The mapping can be rather precisely demonstrated by placing

L

FL

on a system of �nite length L. We choose to place anti-periodic

boundary conditions of the Fermi �elds 	

L;R

(x + L) = �	

L;R

(x): this

arbitrary choice will not e�ect the thermodynamic limit L!1, which

is ultimately all we are interested in. We can expand 	

L;R

in Fourier

modes

	

R

(x) =

1

p

L

1

X

n=�1

	

Rn

e

i(2n�1)�x=L

; (14.7)

and similarly for 	

L

. The Fourier components obey canonical Fermi

commutation relations f	

Rn

;	

y

Rn

0

g = �

nn

0

, and are described by the

simple Hamiltonian

e

H

R

=

�v

F

L

1

X

n=�1

(2n� 1)	

y

Rn

	

Rn

�E

0

; (14.8)

where the superscript in

e

H

R

has been introduced to prevent confusion

with the rotor Hamiltonian (5.1), and E

0

is an arbitrary constant setting

the zero of energy, which we adjust to make the ground state energy of

H

R

exactly equal to 0; very similar manipulations apply to the left-

movers 	

L

. The ground state of H

R

has all fermions states with n > 0

empty, while those with n � 0 are occupied. We also de�ne the total

fermion number (`charge'), Q

R

, of any state by the expression

Q

R

=

X

n

: 	

y

Rn

	

Rn

: (14.9)

The colons are the so-called `normal-ordering' symbol|they simply indi-

cate that the operator enclosed between them should include a c-number
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subtraction of its expectation value in the ground state of

e

H

R

, which of

course ensures that Q

R

= 0 in the ground state. Note that Q

R

com-

mutes with

e

H

R

and so we need only consider states with de�nite Q

R

,

which allows us to treat Q

R

as simply an integer. The partition function,

Z

R

, of

e

H

R

at a temperature T is then easily computed to be

Z

R

=

1

Y

n=1

(1 + q

2n�1

)

2

(14.10)

where

q � e

��v

F

=TL

(14.11)

The square in (14.10) arises from the precisely equal contributions from

the states with n and �n+1 in (14.8) after the ground state energy E

0

has been subtracted out.

We will provide an entirely di�erent interpretation of the partition

function Z

R

. Instead of thinking in terms of occupation numbers of

individual fermion states, let us focus instead on `particle-hole' excita-

tions. We create a particle-hole excitation of `momentum' n > 0 above

any fermion state by taking a fermion in an occupied state n

0

and mov-

ing it to the unoccupied fermion state n

0

+n. Clearly the energy change

in such a transformation is 2n�v

F

=L, and is independent of the value

of n

0

. This independence on n

0

is a crucial property, and is largely re-

sponsible for the results that follow: it is a consequence of the linear

fermion dispersion in (11.27), and of being in d = 1. We will interpret

the creation of such a particle-hole excitation as being equivalent to the

occupation of a state with energy 2n�v

F

=L created by the canonical

boson operator b

y

Rn

. We can place an arbitrary number of bosons in this

state, and we will now show how this is compatible with the multiplic-

ity of the particle-hole excitations that can be created in the fermionic

language.

The key observation is that there is a precise one-to-one mapping be-

tween the fermionic labeling of the states and those speci�ed by the

bosons creating particle-hole excitations. Take any fermion state, jF i,

with an arbitrary set of fermion occupation numbers and `charge' Q

R

.

We will uniquely associate this state with a set of particle-hole excita-

tions above a particular fermion state we label jQ

R

i; this is the state

with the lowest possible energy in the sector of states with charge Q

R

,

i.e., jQ

R

i has all fermion states with n � Q

R

occupied, and all others
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2 65531 2

F

QR

Fig. 14.1. Sequence of particle-hole excitations (bosons b

Rn

) by which one can

obtain an arbitrary fermion state jF i from the state jQ

R

i, which is the lowest

energy state with charge Q

R

. The �lled (open) circles represent occupied

(unoccupied) fermion states with energies that increase in units of 2�v

F

=L

to the right. The arrows represent bosonic excitations, b

Rn

, with the integer

representing the value of n. Note that the bosons act in descending order in

energy upon the descending sequence of occupied states in jQ

R

i.

unoccupied. The energy of jQ

R

i is

�v

F

L

jQ

R

j

X

n=1

(2n� 1) =

�v

F

Q

2

R

L

(14.12)

Now to obtain the arbitrary fermion state, jF i, with charge Q

R

, �rst

take the fermion in the `topmost' occupied state in jQ

R

i, (i.e., the state

with n = Q

R

) and move it to the topmost occupied state in jF i (See

Fig 14.1). Perform the same operation on the fermion in n = Q

R

� 1 by

moving it to the next lowest occupied state in jF i. Finally, repeat until

the state jF i is obtained. This order of occupying the boson particle-hole

excitations ensures that the b

y

Rn

act in descending order in n. Such an

ordering allows one to easily show that the mapping is invertible and one-

to-one: given any set of occupied boson states, fng, and a charge Q

R

,

we start with the state jQ

R

i and act on it with the set of Bose operators

in the same descending order|their ordering ensures that it is always

possible to create such particle-hole excitations from the fermionic state,

and one is never removing a fermion from an unoccupied state or adding

it to an occupied state. The gist of these simple arguments is that the

states of the many-fermion Hamiltonian

e

H

R

in (14.8) are in one-to-one

correspondence with the many boson Hamiltonian

e

H

0

R

=

�v

F

Q

2

R

L

+

2�v

F

L

1

X

n=1

nb

y

Rn

b

Rn

(14.13)

where Q

R

can take an arbitrary integer value. It is straightforward to
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compute the partition function of

e

H

0

R

and we �nd

Z

0

R

=

"

1

Y

n=1

1

(1� q

2n

)

#

2

4

1

X

Q

R

=�1

q

Q

2

R

3

5

: (14.14)

Our pictorial arguments above are a proof that we must have Z

R

= Z

0

R

:

that this is the case is an identity from the theory of elliptic function|

the reader is invited to verify that the expressions (14.10) and (14.14)

generate identical power series expansions in q.

The above gives an appealing picture of bosonization at the level of

states and energy levels, but we want to extend it to include operators.

To this end, we consider the operator �

R

(x) representing the normal-

ordered fermion density:

�

R

(x) =: 	

y

R

(x)	

R

(x) :=

Q

R

L

+

1

L

X

n6=0

�

Rn

e

i2n�x=L

; (14.15)

where the last step is a Fourier expansion of �

R

(x); the zero wavevector

component is Q

R

=L, while non-zero wavevector terms have coe�cient

�

Rn

. The commutation relations of the �

Rn

are central to our subsequent

considerations, and require careful evaluation; we have

[�

Rn

; �

R�n

0

] =

X

n

1

;n

2

[	

y

Rn

1

	

Rn

1

+n

;	

y

Rn

2

	

Rn

2

�n

0

]

=

X

n

2

�

	

y

Rn

2

+n

	

Rn

2

�n

0

�	

y

Rn

2

	

Rn

2

+n�n

0

�

(14.16)

It may appear that a simple of change of variables in the summation

over the second term in (14.16) (n

2

! n

2

+ n) shows that it equals the

�rst, and so the combined expression vanishes. However, this is incorrect

because it is dangerous to change variables on expressions which involve

the summation over all integer values of n

2

, and are therefore individu-

ally divergent; rather, we should �rst decide upon a physically motivated

large momentum cuto� which will make each term �nite, and then per-

form the subtraction. We know that the linear spectrum in (14.8) holds

only for a limited range of momenta, and for su�ciently large jnj lattice

corrections to the dispersion will become important. However, in the

low-energy limit we are interested in, the high fermionic states at such

momenta will be rarely, if ever, excited from their ground state con�gu-

rations. We can use this fact to our advantage by explicitly subtracting

the ground state expectation value (`normal-order') from every fermionic

bilinear we consider; the 
uctuations will then be practically zero for the
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high energy states in both the linear spectrum model (14.8) and the ac-

tual physical systems, and only the low energy states, where (14.8) is

actually a good model, will matter. After such normal-ordering, the

summation over both terms in (14.15) is well-de�ned and we are free to

change the summation variable. As a result, the normal-ordered terms

then do indeed cancel, and the expression (14.16) reduces to

[�

Rn

; �

R�n

0

] = �

nn

0

X

n

2

�

h	

y

Rn

2

�n

	

Rn

2

�n

i � h	

y

Rn

2

	

Rn

2

i

�

= �

nn

0

n: (14.17)

This key result shows that the only non-zero commutator is between

�

Rn

and �

R�n

, and that it is simply the number n. By a suitable rescal-

ing of the �

Rn

it should be evident that we can associate them with

canonical bosonic creation and annihilation operators. We will not do

this explicitly, but will simply work directly with the �

Rn

as a set of

operators obeying the de�ning commutation relation (14.17), without

making explicit reference to the fermionic relation (14.15). We assert

that the Hamiltonians

e

H

R

,

e

H

0

R

are equivalent to

e

H

00

R

=

�v

F

Q

2

R

L

+

2�v

F

L

1

X

n=1

�

R�n

�

Rn

: (14.18)

This assertion is simple to prove. First, it is clear from the commutation

relations (14.17) that the eigenvalues and degeneracies of (14.18) are

the same as those of (14.13) (the individual states are however not the

same: there is a complicated linear relation between them, which is not

di�cult to reconstruct from our de�nitions of the operators �

Rn

and

b

Rn

). Second, the de�nition (14.18), and the commutation relations

(14.17) imply that

[

e

H

00

R

; �

R�n

] =

2�v

F

n

L

�

R�n

; (14.19)

Precisely the same commutation relation follows from the fermionic form

(14.8) and the de�nition (14.15).

We have completed a signi�cant part of the bosonization program: we

have the `bosonic' Hamiltonian in (14.18) in terms of the operators �

Rn

which obey (14.17) and also have the simple explicit relation (14.15) to

the fermionic �elds. Before proceeding further, we introduce some nota-

tion which allows us to recast the results obtained so far in a compact,

local, and physically transparent notation. We combine the operators

�

Rn

and �

Ln

(the Fourier components of the left-moving fermions 	

L

)
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into two local �elds �(x) and �(x), de�ned by

�(x) = ��

0

+

�Qx

L

�

i

2

X

n6=0

e

i2n�x=L

n

[�

Rn

+ �

Ln

]

�(x) = ��

0

+

�Jx

L

�

i

2

X

n6=0

e

i2n�x=L

n

[�

Rn

� �

Ln

] ; (14.20)

where Q = Q

R

+ Q

L

is the total charge, J = Q

R

� Q

L

, and �

0

and

�

0

are a pair of angular variables which are canonically conjugate to J

and Q respectively, i.e., the only non-vanishing commutation relations

between the operators on the right-hand sides of (14.20) are (14.17) and

[�

0

; J ] = i and [�

0

; Q] = i. Our objective in introducing these is that a

number of simple and elegant results follow. First, using (14.20), and

the commutators just noted, we have

[r�(x); �(y)] = [r�(x); �(y)] = i��(x� y): (14.21)

Second, (14.18) can now be written in the compact, local form

e

H

00

R

+

e

H

00

L

=

v

F

2�

Z

L

0

dx

�

1

K

(r�)

2

+K(r�)

2

�

; (14.22)

where the dimensionless coupling K has been introduced for future con-

venience; in the present situation K = 1, but we will see later that

moving away from H

XX

to more general H

12

will lead to other values

of K. The expressions (14.22) and (14.21) can be taken as de�ning rela-

tions, and we could have derived all the properties of the �

Rn

, �

Ln

, �

0

,

�

0

as consequences of the mode expansions (14.20), which follow after

imposition of the periodic boundary conditions

�(x+ L) = �(x) + �Q �(x+ L) = �(x) + �J: (14.23)

These conditions show that �(x) and �(x) are to be interpreted as angu-

lar variables. Our �nal version of the bosonic form of

e

H

R

+

e

H

L

in (14.8)

is contained in the (14.21), (14.22) and (14.23), and the two formula-

tions are logically exactly equivalent. The Hilbert space splits apart into

sectors de�ned by the integers Q = Q

R

+ Q

L

, J = Q

R

� Q

L

(and so

(�1)

Q

= (�1)

J

), which measure the total charge of the left and right

moving fermions. All 
uctuations in each sector are de�ned by the 
uc-

tuations of the local angular bosonic �elds �(x) and �(x), or equivalently

by the fermionic �elds 	

R

(x) and 	

L

(x).

We are going to make extensive use of the �elds �(x), �(x) in the

following, and so their physical interpretation would be useful. First,
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the �eld � has nothing to do with the O(N) order parameter �

�

used

in other chapters of this book: both notations are standard, and the

context should prevent confusion. The meaning of � follows from the

derivative of (14.20), which with (14.15) gives

r�(x) = ��(x) � �(�

R

(x) + �

L

(x)): (14.24)

So the gradient of � measures the total density of particles, and �(x)

increases by � each time x passes through a particle. The expression

(14.24) also shows that we can interpret �(x) as the displacement of

the particle at position x from a reference state in which the particles

are equally spaced as in a crystal, i.e., �(x) is something like a phonon

displacement operator whose divergence is equal to the local change in

density. Turning to �(x), one interpretation follows from (14.21) which

shows that �

�

(x) � �r�(x)=� is the canonically conjugate momentum

variable to the �eld �(x). In other words, �

2

�

is the kinetic energy asso-

ciated with the `phonon' displacement �(x). Using this interpretation,

we can easily apply the methods of Chapter 2 to obtain the Lagrangean

form of (14.22):

S

TL

=

1

2�Kv

F

Z

dxd�

�

(@

�

�)

2

+ v

2

F

(r�)

2

�

; (14.25)

where the subscript TL represents Tomonaga-Luttinger. This is just

the action of a free, massless, relativistic scalar �eld. Conversely, we

also have a `dual' formulation of S

TL

in which we interpret �(x) as the

fundamental degree of freedom, and �

�

� �r�=� as its canonically

conjugate momentum; then we obtain the same action but with K !

1=K

S

TL

=

K

2�v

F

Z

dxd�

�

(@

�

�)

2

+ v

2

F

(r�)

2

�

; (14.26)

for

e

H

R

+

e

H

L

. In this approach a direct physical interpretation of �(x) is

lacking; we will see below that we can interpret it as an angular variable

corresponding to the O(2) order-parameter correlations associated with

the antiferromagnetH

XX

in (11.5). In particular we will �nd �̂

+

� (�̂

x

+

i�̂

y

) � (�

1

+ i�

2

) � (n

1

+ in

2

) � e

i�

(here we have used the notations

of Part 2, where

~

� and n represent an O(2) order parameter). So a

slowly-varying � corresponds to ordering in the x-y plane in the original

antiferromagnet. Also, if, as in Section 11.1 we interpret the S = 1=2

antiferromagnet as a hard-core Bose gas, then e

i�

is the super
uid order

parameter. Another important property of � is obtained by taking the
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gradient of (14.20), and we obtain the analog of (14.24):

r�(x) = �(�

R

(x)� �

L

(x)); (14.27)

so gradients of �measure the di�erence in density of right and left moving

particles.

The �nal links in the bosonization procedure are expressions for the

fermionic �elds 	

R;L

(x) in terms of �(x) and �(x). The details of such a

representation depend upon microscopic features of the particular model

under consideration. These have been worked out explicitly for a fermion

Hamiltonian known as the Luttinger model [200]; here we are considering

H

XX

, and for this more general case we will be satis�ed by an operator

correspondence which gets the correct long distance behavior, but aban-

dons attempts to get prefactors like those in (14.4) correct (for recent

progress in computing prefactors for H

12

at J

2

= 0 see Refs [311, 8]).

With this limited aim, the basic result can be obtained by some simple

general arguments. First note that if we annihilate a particle at the

position x, from (14.24) the value of �(y) at all y < x has to be shifted

by �. Such a shift is produced by the exponential of the canonically

conjugate momentum operator �

�

:

exp

�

i�

Z

x

�1

�

�

(y)dy

�

= exp (�i�(x)) : (14.28)

However, it is not su�cient to merely create a particle: we are creating

a fermion, and the fermionic antisymmetry of the wavefunction can be

accounted for if we pick up a minus sign for every particle to the left of

x, i.e., with a Jordan-Wigner like factor

exp

�

im�

Z

x

�1

	

y

F

(y)	

F

(y)dy

�

= exp (imk

F

x+ im�(x)) ; (14.29)

where m is any odd integer, and 	

y

F

	

F

measures the total density of

fermions (see (4.39)), including the contributions well away from the

Fermi points. In the second expression in (14.29), the term proportional

to k

F

represents the density in the ground state, while �(x) is the in-

tegral of the density 
uctuation above that. Combining the arguments

leading to (14.28) and (14.29) we can assert the basic operator corre-

spondence [199, 200, 201]

	

F

(x) =

X

m odd

A

m

e

imk

F

x+im�(x)�i�(x)

; (14.30)

where the A

m

are a series of unknown constants which depend upon
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microscopic details. We will see shortly that the leading contribution to

(14.30) comes from the terms withm = �1, and the remaining terms are

subdominant at long distances. Comparing with (11.27) it is clear that

we may make the operator identi�cations for the right and left moving

continuum Fermion �elds

	

R

� e

�i�+i�

	

L

� e

�i��i�

: (14.31)

The other terms in (14.30) arise when these basic fermionic excitations

are combined with particle-hole excitations at wavevectors which are

integer multiples of 2k

F

.

Similar arguments, and the above expressions, can also be applied to

spin operators �̂

�

via the relations (14.2). For �̂

+

the arguments are as

above except that the `string' factor in (14.2) exactly compensates for

the change in sign discussed above: we have then

�̂

+

j

= (�1)

j

X

m even

B

m

e

imk

F

x

j

+im�(x

j

)�i�(x

j

)

; (14.32)

for some unknown B

m

. The most important term in this expansion is

m = 0, so that

�̂

+

j

� (�1)

j

e

i�

; (14.33)

establishing our earlier claim of e

i�

as the order parameter for x-y spin

correlations. Finally, �̂

z

is related to the fermion density: the slowly

varying component of that can be reconstructed from (14.24), while ad-

ditional contributions come from evaluating 	

y

F

(x)	

F

(x) using (14.30)

�̂

z

j

a

= �

2

�

r�(x

j

) +

X

m 6=0;even

C

m

e

imk

F

x

j

+im�(x

j

)

; (14.34)

for some C

m

, with a the lattice spacing. Note that the coe�cient of

the slowly varying term (which does not oscillate at a multiple of the

wavevector k

F

) is precisely determined: this is ultimately related to the

fact

P

j

�̂

z

j

= �2Q commutes with the Hamiltonian.

We have completed our derivation of the bosonization technology, and

are ready to apply it to obtain new results. The basic result is the equiv-

alency of the fermionic Hamiltonian (14.8), and its left-moving partner,

to the bosonic theory de�ned by (14.21), (14.22) and (14.23). Also key

are the operator correspondences in (14.24), (14.30), (14.32) and (14.34).

We turn to the evaluation of the correlators of the spin operators,

(14.32) and (14.34), under the theory (14.22), (14.25) or (14.26). These
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can be obtained by use of the basic identity

he

iO

i = e

�hO

2

i=2

(14.35)

where O is an arbitrary linear combination of � and � �elds at dif-

ferent spacetime points; this identity is a simple consequence of the

free-�eld (Gaussian) nature of (14.22). In particular, all results can be

reconstructed by combining (14.35) with repeated application of some

elementary correlators. The �rst of these is the two-point correlator of

�

1

2




(�(x; �) � �(0; 0))

2

�

= �v

F

K

Z

dk

2�

T

X

!

n

1� e

i(kx�!

n

�)

!

2

n

+ v

F

k

2

=

K

4

ln

�

cosh(2�Tx=v

F

)� cos(2�T�)

(2�T=v

F

�)

2

�

; (14.36)

where � is a large momentum cuto�. Similarly, we have for �, the

correlator

1

2




(�(x; �) � �(0; 0))

2

�

=

1

4K

ln

�

cosh(2�Tx=v

F

)� cos(2�T�)

(2�T=v

F

�)

2

�

:

(14.37)

To obtain the �, � correlator we use the relation �

�

= �r�=�, and the

equation of motion �

�

= @

�

�=(�v

F

K) which follows from the Hamilto-

nian (14.22); then by an integral and di�erentiation of (14.36) we can

obtain

h�(x; �)�(0; 0)i =

1

2

arctan

�

tan(�T�)

tanh(�Tx=v

F

)

�

(14.38)

Applying (14.35) and (14.37) to (14.33) we get

(�1)

j

h�̂

+

j

(�)�̂

�

0

(0)i �

�

T

2

sin(�T (� + ix

j

=v

F

)) sin(�T (� � ix

j

=v

F

))

�

1

4K

:

(14.39)

At the valueK = 1 forH

XX

, this agrees precisely with the result claimed

earlier in (11.74) and (11.85). In this previous case we had obtained the

T > 0 crossover functions by appealing to the mapping (4.64) between

T = 0 and T > 0 correlators, which was claimed to be a consequence

of the conformal invariance of the low-energy theory. Here we have

shown that the low energy theory is given by (14.25) or (14.26), and

that its T = 0 and T > 0 correlators are indeed related by (4.64). Very

similar arguments can also be advanced by a bosonization analysis of

the quantum Ising chain to establish (4.64) for the model of Chapter 4.
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At T = 0, (14.39) gives an equal time correlator which decays as 1=

p

x

which is in agreement with the exact result (14.4). We can also obtain

the form of the subleading terms by considering the correlators of the

complete expression (14.32): at T = 0 we have the following structure

in the asymptotic expansion of the equal-time correlators

(�1)

j

h�̂

+

j

�̂

�

0

i =

1

X

m=0

e

B

m

(x

j

)

2m

2

K+1=(2K)

cos(2mk

F

x

j

) (14.40)

for some unknown coe�cients

e

B

m

. Notice, as claimed earlier, the m > 0

terms all decay faster than the dominant m = 0 term.

Precisely the same methods can be applied to the correlators of �̂

z

.

From (14.34), the analog of the expansion (14.40) for the T = 0 equal-

time correlator is

1

a

2

h�̂

z

j

�̂

z

0

i = �

2

�

2

x

2

+

1

X

m=1

e

C

m

(x

j

)

2m

2

K

cos(2mk

F

x

j

); (14.41)

for some unknown

e

C

m

. Note that the leading, non-oscillating, term

agrees precisely with the �rst term in (14.5). For the special case of

H

XX

, K = 1, and the oscillating terms in (14.41) are in agreement with

that in (14.5) for the special values

e

C

1

= 2=�

2

and

e

C

m>1

= 0. The

subleading terms in (14.41) do not appear for this special free fermion

point, but there is no reason for them to vanish in the general case which

will be considered in the following section.

14.2 Phases of H

12

We are ready to address the properties of the Hamiltonian H

12

in (14.1)

for the case of general J

1

, J

2

and � [202]. We will use exactly the same

bosonization procedure developed in Section 14.2 for H

XX

but apply it

to the more interacting fermion Hamiltonian in (14.3). The �rst step,

as in Section 14.1, is to focus on the low energy degrees of freedom

which consist of fermionic excitations near the wave-vectors �k

F

. This

is facilitated by taking the continuum limit of (14.3) by inserting the

parameterization (4.39) and (11.27). Before doing this it is important

to `normal-order' the terms in (14.3); in other words, we �rst perform

a Hartree-Fock factorization to obtain the suitably renormalized one-

particle Hamiltonian. In this manner we obtain the following continuum

limit of H

12

H

12

= H

FL

+H

a

+H

b

(14.42)
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where H

FL

was considered earlier in (14.6), and H

a

and H

b

are the two

new terms arising from non-zero � and J

2

. The �rst of these has the

form

H

a

= 8(J

1

�+ 2J

2

)a

Z

dx [(�

R

+ �

L

)(�

R

+ �

L

)] (14.43)

where �

R

was de�ned in (14.15), and similarly for �

L

; this term involves

interactions in which left or right moving fermions scatter o� each other

while exchanging small momenta near the respective Fermi points. The

second term, H

b

, is more subtle: its appearance relies on the special value

of k

F

= �=2a which is demanded by a half-�lled fermion band [202]. For

this value of k

F

, two right-moving fermions at k

F

have a total momentum

2k

F

= �=a, which di�ers from the total momentum of two left moving

fermions (�2k

F

= ��=a), by a reciprocal lattice vector, 2�=a. Hence it

is possible to have an `umklapp' scattering event between these, as in

H

b

= 4(J

1

�� 6J

2

)

Z

dx

h

	

y

R

r	

y

R

	

L

r	

L

+	

y

L

r	

y

L

	

R

r	

R

i

:

(14.44)

Note that this is the only instance in this chapter where the precise value

of k

F

has been important{all other expressions apply for general k

F

and

have been written as such.

We proceed to bosonize H

a

and H

b

using the prescriptions of Sec-

tion 14.1. The case of H

a

is straightforward: we use (14.24) to write H

a

as

H

a

=

8(J

1

�+ 2J

2

)

�

2

Z

dx(r�)

2

: (14.45)

This can be easily absorbed into the bosonized version of H

FL

in (14.22)

by a rede�nition of v

F

and K. In this way we have shown that the

Hamiltonian H

FL

+H

12

is equivalent to (14.22) but with the parameters

v

F

� 4a

�

J

1

�

J

1

+

4(J

1

�+ 2J

2

)

�

��

1=2

K �

�

1 +

4(J

1

�+ 2J

2

)

J

1

�

�

�1=2

: (14.46)

The values of the parameters only hold for small � and J

2

; however

the general result of a renormalization of v

F

and K, but with no other

change, is expected to hold more generally. Notice that K 6= 1, but the

results in Section 14.1 were quoted for general K and can now be used.

The consequences of H

b

are a little more non-trivial. We insert the

expansions (14.30) into H

b

and generate a number of terms; the most
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important of these arises from simply using the leading terms in (14.31)

which yields

H

b

= �v

Z

dx cos(4�(x)) + : : : (14.47)

where v � (J

1

� � 6J

2

). This is an important interaction modifying the

simple Gaussian action in (14.22). The �nal bosonized version of H

12

is

then given by the action

S

SG

=

Z

dxd�

�

1

2�Kv

F

�

(@

�

�)

2

+ v

2

F

(r�)

2

�

� v cos(4�)

�

(14.48)

This action represents the so-called sine-Gordon model and its properties

will be examined in the following subsection.

For now, let us note the physical implication of the cos(4�) term and

some related issues. Recall from the commutation relations (14.21) that

r� is canonically conjugate to the x-y order represented by the angular

variable �{see the relation above (14.26) that �

�

= �r�=�. So we can

write the cos(4�) term as

exp

�

�4�i

Z

x

�1

�

�

(y)dy

�

+H:c: (14.49)

In this form it is clear that this operator translates � ! � + 4� for all

y < x. But this is the same as inducing a 4� vortex in the angular

order parameter �. Thus the e�ect of the cos(4�) term is to allow for

4� vortex tunneling events between di�erent winding number sectors of

the angular variable � representing spin ordering in the x-y plane. This

interpretation is also consistent with (14.27) and (14.44): in the latter

equation we see that H

b

turns two left-moving particles into two right-

moving particles, and so by the former equation there must be a step of

4� in � at the point this happens.

It is interesting there is no 2� vortex event allowed above in H

12

. We

will see shortly that absence of such single vortices, and the presence only

of double vortices this has some important consequences. The single 2�

vortices are certainly permitted on general topological grounds, but to

induce them it turns out to be necessary to modify H

12

. One possibility

is a staggered exchange interaction

H

12

! H

12

+ J

3

X

i

(�1)

i

~

�̂

i

�

~

�̂

i+1

: (14.50)

To obtain the bosonized version of this additional term, examine the

structure of �̂

+

i

�̂

�

i+1

under the mapping (14.32); the staggering of the
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exchange means that we have to pick up the co-e�cient of (�1)

i

=

e

i2k

F

x

i

{this gives us the term

R

dx sin(2�). The same term also arises

from the corresponding mapping using (14.34) of the �̂

z

i

�̂

z

i+1

term. So

we have the operator correspondence

(�1)

i

~

�̂

i

�

~

�̂

i+1

� sin(2�): (14.51)

A second possibility is a staggered �eld in the z direction; by a very

similar argument from (14.34) we obtain the operator correspondence

(�1)

i

�̂

z

i

� cos(2�): (14.52)

The arguments in the previous paragraph show that adding either of the

sin(2�) or cos(2�) terms to S

SG

will allow 2� vortex tunneling events.

It is also interesting to note the fermionic form of these 2� tunneling

events: by reversing the bosonization mapping, it is simple to see that

(14.51) and (14.52) correspond single fermion scattering terms that turn

left to right movers and vice versa, and change total momentum by 2k

F

.

In contrast, the original scattering term in (14.44) scattered two particles

and changed momentum by 4k

F

.

14.2.1 Sine-Gordon Model

We will discuss some important properties of the sine-Gordon �eld the-

ory S

SG

in (14.48) as a function of the dimensionless coupling K and the

dimensionful parameter v. The velocity v

F

simply sets the relative scales

of time and space, but does not otherwise modify physical properties.

We have already obtained results for S

SG

along the line v = 0: the

model is a free, gapless, Gaussian �eld theory characterized by the fol-

lowing T = 0 equal-time correlators

he

ip�(x)

e

�ip

0

�(0)

i � �

pp

0

=x

p

2

=2K

; he

ip�(x)

e

�ip

0

�(0)

i � �

pp

0

=x

p

2

K=2

;

(14.53)

for p = p

0

these results follow directly from (14.35-14.37), while for p 6= p

0

application of (14.35) leads to an infrared divergent integral in the ex-

ponent, and so the correlator vanishes. Note that these correlators are

both power-laws, indicating that the theory is scale invariant along the

line v = 0 (indeed it is conformally invariant). From (14.53) we see that

this is a line of critical points along which the exponents vary continu-

ously as a function of the dimensionless parameter K. The technology

of renormalization group scale transformations can therefore be applied
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freely at any point along this line. We can talk of scaling dimensions of

operators, and the results (14.53) show that

dim[e

ip�

] =

p

2

4K

; dim[e

ip�

] =

p

2

K

4

: (14.54)

Also the relativistically invariant structure of the derivative terms in S

SG

makes it clear that the dynamic exponent z = 1. Using this, and the

scaling dimensions (14.54) for p = 4, we immediately obtain the scaling

dimension dim[v] = 2� 4K along the v = 0 line. This can be written as

a renormalization group 
ow equation under the rescaling �! �e

`

:

dv

d`

= (2� 4K)v: (14.55)

So the critical �xed line v = 0 is stable for K < 1=2. However, this 
ow

equation is not the complete story, especially when K approaches 1=2.

For jK � 1=2j � jvj we see that the term on the right hand side is not

linear in the small parameter v, but quadratic. To be consistent, then,

we also have to consider other terms of order v

2

which might arise in

the 
ow equations: as we will see below, there is a renormalization of K

that appears at this order.

The 
ow equations at order v

2

are generated using an approach similar

to that used in Section 6.1 for the N � 3 rotor model in d = 1. As in

(6.5), we decompose the �eld �(x; �) into a background slowly varying

component �

<

(x; �) and a rapidly varying component �

>

(x; �) which

will be integrated out to order v

2

:

�(x; �) = �

<

(x; �) + �

>

(x; �); (14.56)

where �

<

has spatial Fourier components at momenta smaller than �e

�`

,

while �

>

has components between �e

�`

and �. Inserting (14.56) into

(14.48), to linear order in v we generate the following e�ective coupling

for �

<

:

v

Z

d

2

X hcos(4�

<

(X) + 4�

>

(X))i

0

= v

Z

d

2

X cos(4�

<

(X))

D

e

i4�

>

(X)

E

0

= v

Z

d

2

X cos(4�

<

(X))e

�8h�

2

>

i

0

� v

�

1� 4K

d�

�

�

Z

d

2

X cos(4�

<

(X)); (14.57)

where X � (x; �) is a spacetime co-ordinate, the subscript 0 indicates
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an average with respect to the free v = 0 Gaussian action of �

>

, and

d� = �(1 � e

�`

). When combined with a rescaling of co-ordinates

X ! Xe

�`

to restore the cut-o� to its original value, it is clear that

(14.57) leads to the 
ow equation (14.55). The same procedure applies

to quadratic order in v: as the algebra is a bit cumbersome, we will only

schematically indicate the steps. We generate terms like

v

2

Z

d

2

Xd

2

Y cos(4�

<

(X)� 4�

<

(Y )) exp (�16h�

>

(X)�

>

(Y )i

0

)

= v

2

Z

d

2

Xd

2

Y cos(4�

<

(X)� 4�

<

(Y )) exp (�f(X � Y )d�) (14.58)

where f(X�Y ) is some regularization dependent function which decays

on spatial scale � �

�1

. For this last reason we may expand the other

terms in (14.58) in powers of X � Y . The terms with + sign then

generate a cos(8�) interaction: we will ignore this term as the analog

of the arguments used to obtain (14.55) show that this term is strongly

irrelevant for K � 1=2. The terms with the � sign generate gradients

on �

<

and therefore lead to a renormalization of K. In this manner we

obtain the 
ow equation

dK

d`

= ��v

2

(14.59)

where � is a positive, regularization dependent constant (it also depends

upon K, but we can ignore this by setting K = 1=2 in � at this order).

A fairly complete understanding of the properties of S

SG

follows from

an analysis of the equations (14.55) and (14.59). The 
ow trajectories

are shown in Fig 14.2: they lie along the hyperbolae 4�v

2

� (2� 4K)

2

=

constant. There are three distinct possibilities on the ultimate long-

distance fate of the couplings, leading to three separate phases of S

SG

.

We will consider each of these phases in the following subsections, fol-

lowed by a discussion of the critical lines and points between them. We

also show the implications of the properties of S

SG

for a phase diagram

of H

12

in Fig 14.3, with some needed justi�cation to follow in the sub-

sections below.

14.2.2 Tomonaga-Luttinger liquid

For K � 1=2 and jvj � (2K � 1)=

p

�, the 
ow is into the �xed line

v = 0, K � 1=2. This line is described by the free Gaussian theory

in (14.22) or (14.25) or (14.26). The ground state is a spin singlet

(total S

z

= 0) and there are gapless excitations with a linear dispersion
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K

v

spin Peierls

Ising-Neel

Tomonaga-Luttinger

SU(2) symmetry

Fig. 14.2. Renormalization group 
ow trajectories and phase diagram of the

sine-Gordon model S

SG

in (14.48), as obtained from (14.55) and (14.59). The

origin is at K = 1=2, v = 0. The attractive �xed line v = 0, K � 1=2 controls

the Tomonaga-Luttinger liquid phase which is described in Section 14.2.2.

The points 
owing o� to v ! �1 are in the spin-Peierls phase described

in Section 14.2.3. Finally, the points 
owing to v ! 1 are in a Ising-N�eel

state discussed in Section 14.2.4. The separatrices between these regions are

v = �(2K � 1)=

p

�. The line v = (2K � 1)

p

� corresponds to the SU(2)

symmetricH

12

with � = 1; di�erent points on this line are accessed by varying

J

2

=J

1

.

which lead to the T = 0 power-law decay of correlators in (14.40) and

(14.41). The dynamic �nite T properties follow from correlators like

(14.39) whose properties were discussed in some detail in Section 4.5.3

where we considered the critical point of the quantum Ising chain: the

only change is that we now have a general exponent K (compare (14.39)

with (4.112)) but this does not make a qualitative change to the physical

discussion|only some quantitative factors change, and these can be

easily computed for arbitrary K.

14.2.3 Spin-Peierls order

In this case the 
ow is towards v = �1: this happens for all K � 1=2

and v < 0, and for K > 1=2, v < (1� 2K)=

p

� (see Fig 14.2).

The 
ow of jvj to large values indicates that the cos(4�) term in S

SG

(Eqn (14.48)) dominates the long distance properties. A good �rst step

is to assume that this is the dominant term, which then indicates that the
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λ

2 1J  / J

Tomonaga-
Luttinger
liquid

Ising-Neel

spin-Peierls

Fig. 14.3. Phase diagram of H

12

(Eqn (14.1)) deduced from the 
ows in

Fig 14.2 by Ref [202]. The vertical line � = 1 has SU(2) symmetry and

maps onto the line v = (2K � 1)=

p

� in Fig 14.2. The multicritical point

where all three phases meet is the point v = 0, K = 1=2 in Fig 14.2.

values of � will be pinned predominantly at the minima of the cos(4�)

potential. For v < 0 these are at

� = �

n

= (2n+ 1)�=4 (14.60)

where n is an arbitrary integer. In principle, each value of n labels a

di�erent ground state of S

SG

. However � is an angular variable, and

physical observables depend only upon gradients or trigonometric func-

tions of �; one observable which can distinguish between the di�erent

�

n

is the staggered bond exchange energy in (14.51) as

D

(�1)

i

~

�̂

i

�

~

�̂

i+1

E

� sin(2�

n

) = (�1)

n

(14.61)

So there are only two distinct ground states, corresponding to even or

odd values of n. There is a spontaneously broken translational symmetry

in either of these states due to the appearance of a staggering in the bond

exchange energy. This is known as a spin-Peierls ordering, as discussed

for the d = 2 case in Section 13.3.1.2: a schematic of these spin-Peierls

states is shown in Fig 14.4. We emphasize that this ordering appears

spontaneously in H

12

and is not induced by a staggering of the exchange

constants as in (14.50); the latter requires an explicit sin(2�) term in

the action, which have not included.

We consider the excitations above either of the ground states. From

the framework of the sine-Gordon theory it appears natural to parame-

terize �(X) = �

n

+

e

�(X), and to expand the action in powers of

e

�. At
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Fig. 14.4. Schematic of the two spin-Peierls ground states of H

12

. The thick

lines represent larger values of h

~

�̂

i

�

~

�̂

i+1

i, while the unmarked near-neighbor

pairs have smaller values.

quadratic order the curvature at the minimum of the cos(4�) potential

will give rise to a

e

�

2

mass term, and so we can expect that there is a gap

and the lowest-lying excitation is a massive

e

� particle. This expectation

turns out to be incorrect, and there is an alternative massive excitation

with a lower energy. For reasons we shall not fully discuss here, the

most important excitation turns out to be a `soliton': the reader can

consult the book by Rajaraman [394] for further details. This is a topo-

logical excitation consisting of a localized lump at which � interpolates

between the two ground states: so, e.g., we have �(x ! 1) = �

n

and

�(x ! �1) = �

n�1

, and �(x) moves between the two limits in the

immediate vicinity of some point x = x

0

. The disturbance around x

0

can move, and this constitutes a quantum particle of mass �=v

2

F

. This

solitonic particle has a lower energy than the

e

� particle for K > 1=8,

and so, in keeping with the general notation in this book, we have used

the symbol � for the energy gap of the spin-Peierls state (the action

S

SG

is relativistically invariant and so the energy-momentum dispersion

of the solitonic particle is "

k

= (�

2

+ v

2

F

k

2

)

1=2

). The

e

� particle can be

considered as a soliton/anti-soliton bound state, and is found to be sta-

ble towards decay into a pair of widely separated soliton and anti-soliton

particles only for K < 1=4. In any case, the low temperature properties

are dominated by those of a dilute gas of solitons and anti-solitons for

all K > 1=8.

It is also useful to have an interpretation of the soliton in terms of

the underlying spin Hamiltonian H

12

[460]. Notice that each soliton

involves a change �� = ��=2. By the relation (14.24) between gradients

of � and the charge density, we see that each soliton carries a charge

Q = �1=2. This is to be contrasted with the charge Q = �1 carried by

the underlying Jordan-Wigner fermion 	

F

. Of course this charge is also

equal to the total spin S

z

, and so the soliton is a S

z

= �1=2 particle{a
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Fig. 14.5. Schematic of a Q = 1=2 spinon excitation interpolating between the

two spin-Peierls ground states of Fig 14.4.

spinon, in the terminology of Section 13.3.2. This suggests the simple

pictorial representation shown in Fig 14.5: the domain between the two

spin Peierls states requires a shift in the singlet bonds by one site, leading

to a free S

z

= 1=2 spin at the boundary.

Note that the cos(4�) in the action, representing tunneling only by

�4� vortices, was crucial for the existence of free spinons. If we had an

explicit staggering of the exchange constants, as in (14.50), the resulting

action would allow �2� vortices with a corresponding cos(2�) term in

the action, and a solitonic analysis similar to the one above would show

that excitations were particles with integer spin. This con�nement of

spinons is also easy to understand from the pictorial representation in

Fig 14.5, as the explicit staggering would lead to an energy cost propor-

tional to the length of the `wrong' domain between two spinons.

We turn to the low temperature static and dynamic properties of this

spin-Peierls phase. As already noted, these are dominated by a dilute

gas of S

z

= �1=2 particles. The latter system can be analyzed using a

method essentially identical to that employed in Section 6.2 for the low

temperature properties of the d = 1 O(3) quantum rotor model. In the

latter case, we had particles with S

z

= 1; 0;�1; this is the one of the

main substantive di�erences, and presence here of particles with S

z

=

1=2;�1=2 only leads to simple changes in various numerical prefactors{

the physical properties of the transport of magnetization density are

identical to those discussed in Section 6.2. In particular, the spinon

collisions are described by the low-momentum S matrix in (6.13), with

the m

1

, m

2

, m

0

1

, m

0

2

now taking the values �1=2: the arguments for this

key property are the same as those presented below (6.13). A second

important di�erence is that the spin structure factor is not given by a

single particle propagator as in (6.28-6.30); instead we have to consider

a convolution of two single particle propagators, as in (13.78-13.81).

An explicit demonstration of the existence of the S

z

= �1=2 spinons
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in this phase can be given at the special value K = 1=4. This relies on a

commonly used trick of `refermionization' of sine-Gordon-like �eld theo-

ries in d = 1, and this appears to a be convenient occasion to introduce

it. Consider the fermionic �elds

 

R

� e

�i�=2+i2�

 

L

� e

�i�=2�i2�

: (14.62)

Note that �=2 and 2� obey the same commutation relations as those in

(14.21), and so by working backwards through the arguments leading

to (14.31), we see that  

R;L

are indeed fermionic operators annihilat-

ing particles with a linear dispersion. By the same arguments as those

leading to (14.22) we may conclude that

�iv

F

Z

dx

�

 

y

R

@ 

R

@x

�  

y

L

@ 

L

@x

�

=

v

F

2�

Z

dx

�

4(r�)

2

+

1

4

(r�)

2

�

: (14.63)

However this is precisely the Hamiltonian corresponding to the gradient

terms in S

SG

at K = 1=4. Furthermore, it is easy to see from (14.62)

that the cosine term in S

SG

can be obtained by bilinear combinations

of the  

L;R

. So we have the remarkable result that, at K = 1=4, S

SG

is

equivalent to the free fermion Hamiltonian

Z

dx

�

�iv

F

 

y

R

@ 

R

@x

+ iv

F

 

y

L

@ 

L

@x

+

�

v

F

( 

y

R

 

L

+  

y

L

 

R

)

�

; (14.64)

where � � v multiplies a term arising from cos(4�) in S

SG

. However,

(14.64) describes a free massive Dirac particle in d = 1. Also note that

identity analogous to (14.24) is

1

2

�

:  

y

R

 

R

: + :  

y

L

 

L

:

�

=

1

�

r�; (14.65)

the leading 1=2 shows that the Dirac particle/anti-particles carry charges

�1=2, and identi�es them as the spinons.

An important caution about the discussion above at K = 1=4 is in or-

der. While the free Dirac particle mapping gives an appropriate picture

of the elementary excitations above the ground state, its naive extension

to T > 0 properties is quite misleading. In particular, if the spinons were

really free, their two-particle S matrix for the collision in Fig 6.2) would

take the form

S

m

1

;m

2

m

0

1

;m

0

2

= (�1)�

m

1

m

2

�

m

0

1

m

0

2

; (14.66)

here we have included the (-1) arising from the exchange of two fermions
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explicitly in the S matrix. Comparing this with (6.13), we see a crucial

di�erence in the structure of the spin indices: the spins are now `passing

through' the collision, rather than `bouncing o�'. In fact (14.66) is never

the appropriate result for any realistic condensed-matter system, and

(6.13) always applies at low momenta. The important point is that it is

not possible to ignore additional `irrelevant' terms not explicitly included

in S

SG

. When these terms are carried through the refermionization

above, they will invariably lead to some four-fermion scattering terms;

such terms are always important in the scattering of massive particles

in d = 1, as discussed below (6.13), and lead to the `super-universal' S

matrix in (6.13).

14.2.4 N�eel order

Now the 
ow is towards v = +1: this happens for all K � 1=2 and

v > 0, and for K > 1=2, v > (2K � 1)=

p

� (see Fig 14.2).

The reasoning then closely parallels that in Section 14.2.3 for v !

�1. The important minima of the cos(4�) potential are at

� =

e

�

n

= n�=2: (14.67)

The physical properties of these minima are distinguished by the expec-

tation value




(�1)

i

�̂

z

i

�

� cos(2�

n

) = (�1)

n

: (14.68)

Thus there is a spontaneously broken symmetry characterized by a stag-

gered expectation value in the z component of the spins. This is a N�eel

state with an Ising symmetry; it is to be contrasted with the N�eel state

in Section 13.3.1.2 in which the staggered moment could point in any di-

rection in spin space. Here the anisotropy in the Hamiltonian picks out

the z direction as a preferred one, and there is only a two-fold degener-

acy in the resulting Ising/N�eel ground state. (Note that a fully isotropic

N�eel state is not possible in d = 1, as was indicated in Section 13.3.1.1,

and will be discussed further below in Section 14.2.5.)

Apart from the shift in the minima of the cosine potential from (14.60)

to (14.67) (and the resulting di�erence in the physical interpretation of

the broken symmetry of the ground state), there is essentially no di�er-

ence in the analysis of the 
uctuations here from that in Section 14.2.3;

indeed we can map v ! �v in S

SG

by the shift � ! � + �=4. For

K > 1=8 the lowest lying excitations are massive S

z

= �1=2 spinons
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which interpolate between the two Ising/N�eel ground states. Their col-

lisions are described at low momenta by (6.13) and the low T properties

are as in Section 6.2 with the modi�cations noted above in Section 14.2.3.

14.2.5 Models with SU(2) (Heisenberg) symmetry

Here we focus on the special point � = 1 in H

12

, where the Hamiltonian

has full SU(2) symmetry. We have argued in Sections 13.3.1 and 13.3.1.1

that this model should also be described by the d = 1 O(3) non-linear

sigma model (13.58) with an additional topological term (13.60) at � = �

(this � represents the co-e�cient of the topological term, and should not

be confused with the angular bosonization �eld � used elsewhere in this

chapter). The latter model is characterized by a single dimensionless

coupling g (apart from the momentum cuto� �), and we will answer

the following important question: to what trajectory in the v-K phase

diagram of S

SG

in Fig 14.2 does the d = 1 O(3) non-linear sigma model

at � = � map onto as a function of g ?

A �rst guess would be to simply set � = 1 in the values of the couplings

in (14.46) and in the value of v below (14.47). However, these results

hold for small � and J

2

and are not acceptable for � = 1. A strategy

which works is the following: let us focus on the Tomonaga-Luttinger

phase of Section 14.2.2 and ask if there is any trajectory within it which

corresponds to � = 1. If there was such a trajectory, then SU(2) sym-

metry demands that the �̂

z

�̂

z

and �̂

+

�̂

�

correlators should decay with

the same exponent. We compare the expansions in (14.40) and (14.41)

and notice that their leading terms coincide only at K = 1=2 (the �rst

subleading term also coincides at this value of K). So one point with

SU(2) symmetry in Fig 14.2 is the very symmetrical point in the center

v = 0, K = 1=2. Now if the renormalization group respects the under-

lying symmetry of the Hamiltonian, points 
owing into and away from

v = 0 and K = 1=2 could also be SU(2) symmetric. By examining the

trends in (14.46), and in the value of v below (14.47), we are then led

to assert the following important result:

the line v = (2K � 1)=

p

� has SU(2) symmetry; (14.69)

and therefore corresponds to � = 1 in H

12

; we access di�erent points on

this line by varying J

2

=J

1

, and increasing J

2

=J

1

corresponds to decreas-

ing v and K. This line also maps onto the O(3) non-linear sigma model

at � = �, and increasing g also corresponds to decreasing v and K. The

renormalization group 
ow along this line is easily deduced from either
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(14.55) or (14.59), and we have

dv

d`

= �2

p

�v

2

: (14.70)

This 
ow has a �xed point at v = 0, which corresponds to some critical

value of J

2

=J

1

= J

2c

or g = g

c

, as in Fig 13.1. The O(3) non-linear

sigma model also has an additional unstable �xed point at g = 0, but

that is inaccessible in the present sine-Gordon theory: this �xed point

corresponds to the classical limit S ! 1 (as g � 1=S) and so it is not

surprising it does not appear in an analysis set up explicitly for S = 1=2.

Presumably, the g = 0 �xed point is present somewhere in the large K,

v region of Fig 14.2.

All points with v > 0 (J

2

=J

1

< J

2c

or g < g

c

) 
ow into v = 0

(Figs 13.1 and 14.2): for these values the ground state is a Tomonaga-

Luttinger liquid with correlations given by (14.40) and (14.41) at K =

1=2. The 
ow into the �xed point is logarithmically slow (v(`) � 1=` for

large `), and this leads to logarithmic corrections to the correlators in a

manner rather similar to the d = 3 quantum rotor model examined in

Chapter 8. This critical state at v = 0, K = 1=2 is the closest a spin

model in d = 1 can get to achieving long-range N�eel order - the equal-

time order parameter correlations decay as 1=x. Without the topological

term in the non-linear sigma model, the correlations decay even faster

(exponentially) as discussed in Chapters 5 and 6.

Points with v < 0 (J

2

=J

1

> J

2c

or g > g

c

) 
ow away to large negative

values of v. This puts us in the gapped spin-Peierls phase already dis-

cussed in Section 14.2.3. Additional support for this identi�cation comes

from an interesting exact result of Majumdar and Ghosh [322, 460].

They noted that at the special SU(2) symmetric point, � = 1, J

2

= J

1

=2,

it is possible to write down the exact wavefunction of the ground state

of H

12

: it can be checked that the following simple ansatz consisting of

a product of pairs of singlet bonds is an exact eigenstate of H

12

,

: : :B

12

B

34

B

56

B

78

: : : ; (14.71)

where B

ij

= (j "i

i

j #i

j

� j "i

j

j #i

i

)=

p

2; this state is degenerate with its

symmetry-related partner

: : :B

23

B

45

B

67

B

89

: : : : (14.72)

Arguments proving that these are also the ground states are given by

Majumdar and Ghosh. It should be clear that these are precisely the

spin-Peierls states sketched in Fig 14.4. (We also note that there are
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some interesting generalizations of the Majumdar-Ghosh construction of

exact ground states to antiferromagnets on the square lattice [461, 59]

(one of which has found a recent experimental realization [259, 349]),

but these are for cases where the Hamiltonian does not have the full

square lattice symmetry.)

We can also use the 
ow equation (14.70) to deduce how the energy

gap vanishes, or the spin-Peierls order disappears, as v % 0 (or g & g

c

or J

2

=J

1

& J

2c

. The runaway 
ow for v < 0 from the v = 0 �xed point

in (14.70) has precisely the same structure as the 
ow in (6.8) for the

d = 1 O(3) rotor model. Using precisely the same arguments as those

presented in Section 6.1 we may conclude here that the energy gap � �

exp(�1=(2

p

�jvj)) for small jvj. Also from (14.54), the spin-Peierls order

parameter in (14.61) has scaling dimension dim[sin(2�)] = 2

2

K=2 = 1;

so its expectation value vanishes as hsin(2�)i � � � exp(�1=(2

p

�jvj)).

14.2.6 Critical properties near phase boundaries

There are three phase boundaries in Fig 14.3 and we will consider prop-

erties in their vicinity in turn. The multicritical point where all three

phases meet will not be considered: this point lies on the SU(2) symmet-

ric line � = 1 and has therefore already been described in Section 14.2.5.

We �rst consider the transition from the Tomonaga-Luttinger liquid

to the N�eel phase. We cross the phase boundary by moving the initial

values of v and K in Fig 14.2 across the separatrix v = (2K � 1)=

p

�.

Notice that last point within the Tomonaga-Luttinger liquid is on the

separatrix, which was asserted earlier to have � = 1 and SU(2) symmet-

ric correlations. To understand the growth of the N�eel order parameter,

we have to examine the 
ows from an initial point just across the separa-

trix, i.e., from the point v = (2K�1+�)=

p

� for small �. To facilitate the

integration of the 
ow equations (14.55) and (14.59) we change variables

to

y

1;2

=

p

�v � (2K � 1): (14.73)

Then the Eqns (14.55) and (14.59) become

dy

1

d`

= y

1

(y

1

+ y

2

)

dy

1

d`

= �y

2

(y

1

+ y

2

): (14.74)

It is clear from these equations that one integral is simply y

1

y

2

= C
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where C is a constant determined by the initial conditions; the �rst

equation is then easily integrated to give

tan

�1

y

1

(`)

p

C

� tan

�1

y

1

(0)

p

C

=

p

C` (14.75)

By the usual scaling argument, the characteristic energy gap, �, in the

N�eel phase is of order e

�`

�

where `

�

is the value of ` over which y

1

grows

from an initial value of order �� 1 to a value of order unity. From the

initial conditions, we expect the constant C to also be of order �, and so

let us choose C = �; then a straightforward analysis of (14.75) gives us

� � exp

�

�

�

2

p

�

�

: (14.76)

This singularity, and the 
ow analysis above, are characteristic of a

\Kosterlitz-Thouless" transition which occurs in a variety of physical

situations in both classical and quantum systems{the reader may �nd

more details in the book by Itzykson and Drou�e [247]. Also note the

di�erence between this singularity, and that found for the SU(2) case

in Section 14.2.5{there was no square root within the exponential in the

latter case. By arguments similar to those presented in Section 14.2.5,

we may also conclude here that the order parameter grows as � �.

The transition between the Tomonaga-Luttinger liquid and the spin-

Peierls phase is essentially identical to the above case, and little needs to

be said: the energy gap in the spin-Peierls phase obeys (14.76) near the

phase boundary, and the spin-Peierls order parameter vanishes as � �.

We note that the terminus of the Tomonaga-Luttinger liquid again has

K = 1=2, SU(2) symmetric exponents because the 
ow is again into the

v = 0, K = 1=2 point; this happens even though the underlying model

has � < 1 (see Figs 14.2 and 14.3).

Finally, let us consider the phase boundary between the spin-Peierls

and N�eel phases. This coincides with the line K < 1=2, v = 0 in

Fig 14.2. Along this line correlations of both order parameters decay

with a power law determined by their common scaling dimension (from

(14.51), (14.52) and (14.54)) dim[sin(2�)] = dim[cos(2�)] = K, i.e.,

equal-time correlators decay as x

�2K

. For non-zero v an energy gap

appears, and its magnitude is determined by the relevant 
ow away from

the v = 0 line in (14.55): this 
ow equation tells that 1=� = dim[v] =

(2� 4K), and as z = 1, the energy gap, � behaves as

� � jvj

1=(2�4K)

: (14.77)
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The scaling dimensions of the order parameters above show that they

vanish as �

K

on either side of the phase boundary.

One interesting feature of this last phase boundary deserves further

comment. Notice that we have distinct broken symmetries on either side

of the transition, characterized by very di�erent order parameters, spin-

Peierls and N�eel. If we had attempted to construct a generic Landau-

like mean �eld theory for such distinct order parameters, we would have

concluded that the two phases would not be separated by a second or-

der transition: a �rst order line or co-existence between the two phases

is generic. Nevertheless, we have found here a second order transition

across a line with continuously varying exponents: this is clearly a conse-

quence of the strong quantum 
uctuations in a low-dimensional system,

and mean �eld theory is not a suitable guide for the expected behav-

ior. Recall also that a generic second order phase boundary between

N�eel and spin-Peierls phases has also been proposed in certain collinear

antiferromagnets in d = 2, as discussed in Section 13.3.1.2.

14.3 O(2) rotor model in d = 1

In Part 2 we examined the quantum/Ising rotor models in all spatial

dimensions d and for all values of the number of rotor components, N .

Only one case was omitted, as noted in Chapter 6, d = 1 and N = 2. For

completeness, we will discuss this case here, as only a simple extension

of the methods already introduced is necessary.

We consider a chain of O(2) quantum rotors (de�ned in Section 2.2

and (2.58)) with the Hamiltonian

H

R

=

Jg

2

X

i

^

L

2

i

� J

X

i

^
n

i

�
^
n

i+1

; (14.78)

where
^
n

i

are 2 component unit vectors, there is only a single generator

of O(2) rotations

^

L

i

on each site, and these operators obey the on-site

commutation relations (2.57).

Let us parameterize

n

i

= (cos �

i

; sin �

i

); (14.79)

and take the naive continuum limit of (14.78). This can be done using

the methods discussed in Chapter 2; we obtain a continuum d = 1

quantum �eld theory for � which has precisely the same action as S

TL
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in (14.26) but with the couplings

K �

�

p

g

v

F

�

p

gJa: (14.80)

Under this action, equal time correlators, from (14.53), decay as

h
^
n

i

�
^
n

j

i �

1

jx

i

� x

j

j

1=(2K)

: (14.81)

However, this is clearly not the complete story. This naive continuum

limit has explicitly prevented the introduction of vortices in the angular

� �eld: these are tunneling events in which the spatial winding number

1

2�

Z

dxr� (14.82)

changes between integer values. Such vortices can be conveniently in-

troduced in the dual � �eld formulation, as discussed below (14.49). In

the present situation elementary 2� vortices are certainly allowed by the

lattice Hamiltonian (14.78), and so by the arguments just before and

after (14.49) we obtain the dual action

e

S

SG

=

Z

dxd�

�

1

2�Kv

F

�

(@

�

�)

2

+ v

2

F

(r�)

2

�

� ev cos(2�)

�

: (14.83)

The most important di�erence from S

SG

in (14.48) is that we have a

cos(2�) rather than a cos(4�) term. Much of the analysis of S

SG

in

Section 14.2.1 can now be applied: the renormalization group equations

(14.55) and (14.59) are modi�ed to

dev

d`

= (2�K)ev

dK

d`

= �

e

�ev

2

(14.84)

This leads to a renormalization group 
ow diagram as in Fig 14.2, but in

the vicinity of the point K = 2, v = 0 ( instead of K = 1=2, v = 0). The

model H

R

therefore has a Kosterlitz Thouless transition from a gapless

phase with correlations decaying as (14.81), to a gapped phase (the gap

increases as in (14.76)) and equal-time correlations decay exponentially

as in (1.24). The exponentK takes the valueK = 2 at this critical point:

this is the most important di�erence from the corresponding transition

in H

12

where we had K = 1=2. As a result, the critical order parameter

correlators decay as 1=x

1=4

. Also the excitations in the gapped phase

carry charges Q = �1: this is a consequence of the transition being

driven by single 2� vortices.
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14.4 Applications and extensions

There is a great deal of experimental and theoretical work on S = 1=2

spin chains, and a complete survey will not be attempted here. For a dis-

cussion mainly of neutron scattering experiments see the recent review

articles by Cowley [105] and Broholm [67]. Nuclear magnetic resonance

experiments have also been important in measuring thermodynamic and

low frequency spin relaxation properties; a discussion of these may be

found in Refs [448, 133, 421, 474, 475, 486]. The spin-Peierls phase of

Section 14.2.3 has an experimental realization in the intensively stud-

ied compound CuGeO

3

, although the coupling between the spins and

the phonon excitations [109] almost certainly has to be considered for a

complete understanding of the experiments; a neutron scattering analy-

sis may be found in Ref [15] and a discussion of some theoretical issues

in Ref [31, 191].

The bosonization method has also had an important application in

the study of the edge states of quantum Hall systems: see the review by

Kane and Fisher [262].
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Magnetic ordering transitions of disordered

systems

by T. Senthil and S. Sachdev

This chapter has been adapted from the Ph. D. thesis of T. Senthil,

submitted to Yale University (1997), unpublished.

The last two chapters of this book will move beyond the study of

regular Hamiltonians which have the full translational symmetry of an

underlying crystalline lattice, and consider the physically important case

of disordered systems described by Hamiltonians with couplings which

vary from point to point in space. By the standards of the regular

systems we have already discussed, the quantum phase transitions of

disordered systems are very poorly understood, and only a few well-

established results are available: a large amount of theoretical e�ort

has been expended towards unraveling the complicated phenomena that

occur, and they remain active topics of current research. The aims of

our discussion here will therefore be rather limited{ we will highlight

some important features which are qualitatively di�erent from those of

non-disordered systems, make general remarks about insights that can

be drawn from our understanding of the �nite T crossovers in Part 2,

and discuss the properties of some simple solvable models.

In keeping with the general strategy of this book, we will introduce

some basic concepts by studying the e�ects of disorder on the magnetic

ordering transitions of quantum Ising/rotor models studied in Part 2; we

will also make some remarks in Section 15.3.1 on the e�ects of disorder

on the ordering transitions of Fermi liquids considered in Chapter 12.

399
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Models with much stronger disorder and frustrating interactions which

have new phases not found in ordered systems will be considered in

Chapter 16.

Almost all of this chapter will consider the following disordered Hamil-

tonians: for the case N = 1, we generalize (4.1) to

H

Id

= �

X

i

g

i

�̂

x

i

�

X

<ij>

J

ij

�̂

z

i

�̂

z

j

; (15.1)

while for N � 2, we have the disordered version of (5.1):

H

Rd

=

1

2

X

i

g

i

^

L

2

i

�

X

<ij>

J

ij

^
n

i

�
^
n

j

; (15.2)

where < ij > represents the sum over nearest-neighbors on the sites,

i, of a regular lattice, and the couplings g

i

� 0, J

ij

� 0 are random

functions of position (note that g

i

has the dimensions of energy, unlike

the dimensionless g in (4.1) and (5.1), and the non-disordered case ob-

tains with g

i

= gJ and J

ij

= J). The restriction that the couplings all

be non-negative has an important simplifying consequence: there is no

frustration in the exchange terms in (15.1) and (15.2), and so for small

enough g

i

, there is a magnetically ordered ground state, characterized by

the same order parameter used for the non-random case. In the present

case we de�ne

N

0

= h�̂

z

i

i T = 0; (15.3)

where the overbar denotes an average over di�erent disorder con�gu-

rations, and the generalization to N � 2 is obvious. For a speci�c

realization of the disorder, the value of h�̂

z

i

i in the magnetically-ordered

ground state will vary from point to point due to the microscopic disor-

der, but there will be an average uniform component which is measured

by N

0

: this average can be computed by summing h�̂

z

i

i over all sites i

for a speci�c realization of the disorder, or by performing the disorder

average as in (15.3)|the result is expected to be the same. Now as we

raise the value of all the g

i

(say, by increasing their mean, while keeping

their variance �xed), we expect a phase transition at a critical value of

g = hg

i

i to a quantum paramagnet with N

0

= 0|for su�ciently large g

i

,

the strong-coupling methods of Sections 4.1.1 and 5.1.1 apply, and show

that ground state must be a quantum paramagnet. It is this transition

from a magnetically ordered state to a quantum paramagnet which will

form the basis of most of our discussion of quantum phase transitions in

disordered systems in this chapter.
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We will begin in Section 15.1 by discussing a general stability crite-

rion that must be satis�ed by a quantum critical point in any disordered

system: this leads to the requirement that the correlation length expo-

nent � satisfy � � 2=d. Further general considerations will appear in

Section 15.2 where we discuss the low energy spectrum on the phases

away from the critical point: the presence of disorder introduces the

so-called Gri�ths-McCoy singularities. A �rst analysis of the models

H

Id

and H

Rd

will appear in Section 15.3 using the �eld-theoretic meth-

ods of Chapter 8. Two solvable cases of H

Id

will be considered next:

models near the percolation transition in Section 15.4 and in d = 1 in

Section 15.5. Some concluding remarks then appear in Section 15.6.

15.1 Stability of quantum critical points in disordered

systems

Because a random system is intrinsically inhomogeneous, it is not a pri-

ori clear that it can display a sharp second-order phase transition at

a speci�c average coupling g = g

c

(say) at which the response func-

tions become singular. After all the couplings vary from point to point,

and there will always be localized regions which are well away from the

critical point, even though the average coupling is critical; consistency

requires that such localized regions don't occur often enough. The re-

strictions this places on the classical critical point were �rst considered

by Harris [211], who actually looked at the simpler question of whether

the classical critical point of the non-random system was stable towards

the introduction of a small amount of disorder. However, it is clear

that the restrictions that emerge apply also to quantum critical points

of random systems: this was discussed by Chayes et al. [88] who also

presented a rigorous argument.

We will be satis�ed here presenting a simple heuristic argument, along

the lines of Harris [211]. Let us tune the transition by varying the value

of g. Focus now on a any region of size L; we can de�ne a local critical

point g

c;r

at which this region will crossover from a magnetically ordered

to a quantum paramagnetic state. The value of g

c;r

will not necessarily

equal the global value g

c

|we can expect that local random 
uctuations

will cause a deviation of order L

�d=2

|this follows from the central limit

theorem-like argument that the variance of order N = L

d

independent

random numbers (the local values of g

c

) is of order

p

N . Such a deviation

is signi�cant if it starts becoming of order jg � g

c

j: this will happen at

length scales shorter than L = L

r

� jg � g

c

j

�2=d

. Now if L

r

is shorter
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than the correlation length �, then by the time we renormalize out to

the scale � � jg� gj

��

, the system has unambiguously decided what its

critical point is, and local random 
uctuations have been smoothed out.

So we now have our stability requirement, L� �, or

jg � g

c

j

�2=d

� jg � g

c

j

��

: (15.4)

Consistency of (15.4) leads to the main result of this section

� �

2

d

; (15.5)

an inequality which must be satis�ed by all quantum critical points of

disordered systems.

In our discussion above we considered the consequences of 
uctuations

in the local position of the critical point. In a �eld-theoretic language,

we can induce such a 
uctuation by perturbing the action with a ran-

dom coupling multiplying the operator which tunes the system across

the transition. More generally, consider the case where the randomness

couples to some local operator O(x; �) which has a scaling dimension

dim[O] = �

O

. This means that the e�ective action for the system will

have an additional term

Z

d

d

x

Z

d�r(x)O(x; �); (15.6)

where r(x) is a �xed random function of space only . We will assume that

the spatial correlations in r(x) are short-ranged, i.e., r(x) and r(x

0

) are

considered as independent random variables for moderate values of jx�

x

0

j. In contrast, note that as r(x) is time-independent, there is an in�nite

correlation `length' along the imaginary time direction: it is this long-

range correlation which makes the e�ects of randomness particularly

severe in quantum systems. Now consider averaging over the disorder

using replicas (this method will be discussed brie
y in Section 15.3).

This generates a term �

2

R

d

d

xd�

1

d�

2

P

ab

O

a

(x; �

1

)O

b

(x; �

2

) where �

2

is

the variance of r, and a; b are replica indices. The scaling of �

2

is given by

power counting to be dim[�

02

] = d+2z�2�

O

. This type of randomness is

therefore relevant if d+2z�2�

O

> 0. For the case of the energy density,

the scaling dimension of the associated coupling constant is 1=�, and so

the dimension of the energy operator is �

O

= d+ z � 1=�; the criterion

for its relevance then becomes � < 2=d, as expected. Conversely, such

random 
uctuations are perturbatively irrelevant if � > 2=d.
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15.2 Gri�ths-McCoy singularities

In addition to the singularities in the spectrum at the quantum-critical

point, all disordered systems have additional \Gri�ths-McCoy" (GM)

singularities [190, 334, 335] which a�ect the phases on either side of the

critical point (related singularities are also present in the statics and

dynamics of classical spin systems [124, 125, 398]). The physics behind

their appearance is quite di�erent from those of the critical singularities,

and the complicated interplay of these two distinct phenomena is at the

heart of the di�culty of analyzing quantum phase transitions in disor-

dered systems. One possibility is that GM singularities of the phases

are quite weak, and are simply idle spectators which are decoupled from

the critical singularities{they are then not part of the universal scaling

functions describing the crossover between the phases. At the other end

of the possibilities, the GM and critical singularities could be tightly

coupled, with no sharp distinction between the two| the GM singular-

ities then become the critical singularities as one approaches the critical

point. In any case, theoretical analyses cannot deal with one without

considering the other, and unraveling the two is often quite di�cult.

The central idea will become clear by considering a speci�c case: the

N = 1 model H

Id

(Eqn (15.1)). We will be interested in the nature of

the low energy spectrum (! ! 0) in the quantum paramagnetic phase

(g > g

c

) not too far from the critical point|this will be controlled

by the GM singularities. (Notice the orders of limits (! ! 0 followed

by g ! g

c

) characterizing these singularities: the opposite orders of

limits (g ! g

c

�rst and then ! ! 0) lead to the critical singularities.)

In the non-disordered case there was an energy gap �

+

� (g � g

c

)

z�

and so all spectral densities vanished for ! < �

+

. We will now argue,

following Refs [152, 154, 489, 405, 197, 540, 410] that there is no such

gap for the disordered system, and there is always a non-zero spectral

density at arbitrarily low energies. Due to the randomness, there would,

in general, be a non-zero probability that any given bond is stronger

than the critical bond strength at which the system orders as a whole.

This would happen in an entire, compact region of linear size L with

probability P (L) � exp(�cL

d

) where c is a constant determined by

the microscopic couplings, width of the random distribution, etc. Such

regions constitute clusters of spins that are coupled strongly enough that

if they were in�nite in size, they would order. Consider any such cluster

of size L. For large L, all the spins in the cluster behave coherently in

space, and it is legitimate to treat the cluster as a single giant spin in the
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presence of some e�ective transverse �eld g

L

. Thus the cluster has two

low-lying energy levels with an energy di�erence 2g

L

well separated from

other higher energy levels. This e�ective �eld, and hence the splitting

between the two levels goes to zero as L!1, thus giving rise to broken

symmetry and \long-range" order within the cluster. For �nite L, g

L

can be estimated in perturbation theory in the ratio of the transverse

�eld to the bond strength. To zeroth order of perturbation theory, there

is no transverse �eld, and the cluster has two degenerate ground states

(all spins up or down) and other excited states separated by a large

energy (of order the bond strength). A non-zero transverse �eld breaks

this ground state degeneracy, and there remains instead a doublet with

a non-zero but small splitting. It is clear that this e�ect will appear only

in a large order of the perturbation theory (= number of spins in the

cluster) � L

d

. Thus the splitting, and hence g

L

are exponentially small

in L

d

: g

L

� g exp(�c

1

L

d

). Now, we assume that di�erent clusters in

the system may be treated independently of one another. Consider the

density of low-energy excitations as measured by the disorder-average

of the imaginary part of the local dynamic susceptibility, Im�

L

(!) =

R

d

d

k=(2�)

d

Im�(k; !), with � de�ned in (4.7) and (4.20):

Im�

L

(!) =

X

�

jh�j�̂

z

i

j0ij

2

�(! � (E

�

�E

0

)) (15.7)

where j�i refer to eigenstates of the system with energy E

�

, and j0i

is the ground state. For low ! in the paramagnetic phase, the only

contribution will be from the rare clusters discussed above. Thus

Im�

L

(!) �

Z

dL P (L)�(! � 2g

L

) (15.8)

�

Z

dL e

�cL

d

�(! � he

�c

1

L

d

) (15.9)

�

!

d=~z�1

(ln(1=!))

d=(d�1)

; (15.10)

where ~z = c

1

d=c. Therefore we have the striking result that the para-

magnetic phase is gapless with a singular power law (up to logarith-

mic corrections) density of states at low energies. The power depends

upon the non-universal exponent ~z and could in principle even lead to

a divergent density of states at zero energy: this power law singular-

ity leads to singularities in the thermodynamic properties of the system

at low temperature. We have chosen the suggestive notation ~z for the

exponent, as it plays the role of the dynamic exponent for the GM sin-
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gularities: the spectral density has units of density per unit energy, or

(length)

�d

=frequency, or the `scaling' dimension d � ~z (the quotes em-

phasize that it is really not appropriate to think of the GM singularities

as re
ecting some underlying scale invariance).

The value of the exponent ~z will vary continuously with g, and its

limiting value as g & g

c

is of some interest. However, it is important

not to confuse this limiting value with the true critical exponent z of the

critical singularities at g = g

c

: for this we will have, by (5.60)

Im�

L

(!) � !

(d�2+�)=z

: (15.11)

The values of lim

g&g

c

~z and z are obtained from �

00

L

(!) by di�erent or-

ders of limits, and could, in principle, be distinct. There is numerical

evidence in some recent simulations [409] that these two quantities co-

incide for H

Id

, but there is no clear physical understanding why this

should be so.

We emphasize that the GM singularities arise due to the presence of

statistically rare clusters which are anomalously strongly coupled, and

hence are unique features of the disordered system. The e�ect becomes

weaker with increasing dimension, ultimately vanishing in the limit of

in�nite dimension. Increasing the range of the interactions also weak-

ens the e�ect - for in�nite range interactions, there are no singularities.

Finally, the e�ect is strongest for the N = 1 model with discrete sym-

metry: we turn below to the N � 2 cases and will �nd much weaker

singularities.

The analysis of the N � 2 case also focuses on the contribution of

rare regions of size L which are almost ordered. We found above that

such regions had a gap of order exp(�c

1

L

d

) for N = 1, and now need

the corresponding result for N � 2. For this, we �rst o�er an alternative

interpretation of the magnitude of the gap for N = 1: we can model the

time evolution of the correlated region of size L as a one-dimensional

classical Ising chain, as is clear from the arguments in Section 2.1|

this chain has an `exchange' of order L

d

, and then the results (2.16)

and (2.28) lead to the correct exponentially small gap. The same inter-

pretation also works for N � 2; we again have an `exchange' of order

L

d

, but now, by (2.46) and (2.55), the gap is inversely proportional to

the exchange, i.e., it now takes a much larger value of order L

�d

. This

larger gap indicates that the correlated region changes its orientation far

more frequently and will be less important for the low energy physics.
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Inserting this gap into the analog of (15.10), we get

�

00

L

(!) �

Z

dL e

�cL

d

�(! � c

1

=L

d

) (15.12)

� exp(�cc

1

=!); (15.13)

which is only a very weak essential singularity. It appears unlikely that

such a weak GM e�ect will play an important role in the 
uctuations at

the quantum critical point.

It should be mentioned here that the above analysis of models with a

continuous O(N) symmetry is special to the rotor models, and does not

apply to random versions of the Heisenberg spin systems of Chapter 13.

The GM of singularities of the latter are quite strong and have been

considered in Refs [52, 154].

15.3 Perturbative �eld-theoretic analysis

In this section, we will attempt to analyze H

Id

and H

Rd

for the case

of weak disorder, by extending the non-disordered system �eld-theoretic

analysis of Chapter 8.

A �rst question to ask is whether the non-disordered (or `pure') �xed

point is stable against disorder. The arguments of Section 15.1 show

that this will be the case if �

pure

> 2=d. For N = 1 we know that

�

pure

=

1

2

for d � 3, and �

pure

� :632 for d = 2 and �

pure

= 1 for d = 1;

thus weak randomness is relevant for all dimensions d < 4. A similar

result holds for higher N . So for d > 4, su�ciently weak disorder should

not change the critical properties from those of the pure system. For

d < 4, we might hope that a renormalization group analysis will allow

us to access a stable �xed point at least for small 4�d. Such an analysis

requires a disordered version of the pure system �eld theory S

�

in (8.2):

this is clearly realized by simply allowing all the coupling constants

to become random functions of the spatial co-ordinate x. However, as

could be expected from the arguments above, the most important spatial

dependence is that of the parameter r which controls the position of the

critical point; we therefore consider the disordered action

S

�d

=

Z

d

d

x

Z

d�

�

1

2

�

(@

�

�

�

)

2

+ c

2

(r

x

�

�

)

2

+

(r

0

+ r(x))�

2

�

(x)

�

+

u

4!

(�

2

�

(x))

2

o

;(15.14)

with r(x) a random function of position with probability distribution
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P [r(x)] � exp(�

R

d

d

xr

2

(x)=(2�

2

)). While it is possible to work directly

with S

�d

, the subsequent analysis is made simpler by making an explicit

average over disorder using the replica method. We will not discuss this

method in any detail here, but refer the reader to introductory discus-

sions in the literature, e.g., in the book by Fischer and Hertz [150]. We

are interested here in average correlators of the random system de�ned

by

Z

D�e

�S

�d

O=Z; (15.15)

where O is any observable, and notice that the average over disorder

must include the disorder-dependent partition function, Z =

R

D�e

�S

�d

,

in the denominator. To overcome this technical di�culty, we introduce

n replicas of the �eld, �

�a

(a = 1 : : : n is the replica index): then if

the operator O involves only the �eld with n = 1, the integral over

the remaining replicas will give a contribution Z

n�1

in the functional

integral over S

�d

. Now note that in the limit n! 0, this yields precisely

the factor Z

�1

appearing in (15.15). So the prescription of the replica

method is to compute correlators with n arbitrary, and then take the

peculiar step of analytically continuing to a system with n = 0 �eld

components. The advantage is that this allows us to average over the

disorder in e

�S

�d

at an early stage.

Introducing n replicas of (15.14) and then averaging over r(x), we

obtain the following translationally invariant action of the �eld �

�a

(� =

1 : : :N , a = 1 : : : n):

S

�d

=

Z

d

d

x

Z

d�

X

a

�

1

2

�

(@

�

�

�a

)

2

+ c

2

(r

x

�

�a

)

2

+ r

0

�

2

�a

�

+

u

4!

(�

2

�a

)

2

o

�

�

2

2

Z

d

d

x

Z

d�d�

0

X

a;b

�

2

�a

(x; �)�

2

�b

(x; �

0

); (15.16)

where all summations over replica indices are explicitly noted. The

renormalization group analysis of this action can be carried out by stan-

dard methods|we simply treat n as an arbitrary integer, and only take

the n! 0 limit after the scaling equations are obtained. We will perturb

the theory in powers of the non-linearities u and �

2

. First, simple power

counting at zeroth order gives us the 
ow equations:

dr

0

dl

= 2r

0

du

dl

= (3� d)u
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d�

2

dl

= (4� d)�

2

(15.17)

Thus �

2

becomes relevant below 4 dimensions, as expected from the

arguments at the beginning of this section. Note that the interaction

strength u however remains irrelevant down to d = 3. At next order,

these 
ow equations get modi�ed to

dr

0

dl

= 2r

0

+ c

1

u� c

2

�

2

(15.18)

du

dl

= (3� d)u� c

3

u

2

+ c

4

u�

2

(15.19)

d�

2

dl

= (4� d)�

2

+ c

5

�

4

� c

6

u�

2

(15.20)

where the c

i

are all positive constants. These equations do not allow for

a �xed point for small 4� d; instead �

2

has runaway 
ows suggesting a

fundamental instability in the perturbation theory. This is a disappoint-

ing result, and we are unable to obtain any reliable information about

the quantum critical point by this approach. Analysis of this problem by

the largeN expansion [270] also fails, again because of runaway 
ows for

the strength of the randomness. Thus the �xed point theory presumably

has a strong amount of randomness. At the level of the non-interacting

theory, one expects that the lowest energy modes will be strongly lo-

calized. Physically, it is clear then that we cannot ignore the e�ects

of interactions - condensation into a localized state leads to enhance-

ment in interaction e�ects. It is necessary to include both disorder and

interactions in a fundamental way.

An alternative approach was taken by Dorogovstev [130] and Boy-

anovsky and Cardy [60]. They extended (15.16) to a quantum �eld

theory in d space and �

�

time dimensions; formally this amounts to re-

placing

R

d� by

R

d

�

�

� and using the standard �eld theoretic methods

of dimensional continuation. The quantum critical point of course cor-

responds to �

�

= 1, but these authors suggested making an expansion

in small �

�

. The validity of such a procedure is not a priori clear as

(15.16) represents the quantum mechanics of a Hamiltonian system only

for �

�

= 1, and it is also clear that a small �

�

suppresses the GM singu-

larities. Simple power counting shows that the equations for r

0

and � in

(15.17) remain unchanged, while that for u gets modi�ed to

du

d`

= (4� �

�

� d)u: (15.21)

Now notice that for small �

�

, both u and � become relevant about the
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u = � = 0 �xed point near d = 4: this allows interactions to control the

instabilities due to disorder, and raises the possibility that a stable �xed

point may be found. This was indeed shown to be the case in Ref [60]:

they found a �xed point with non-zero disorder and interactions in a

double expansion in �

�

and (4�d) which exhibited conventional dynamic

scaling with exponents

z = 1 +

(4�N)(4� d) + (2N + 4)�

�

16(N � 1)

� =

1

2

+

(13N + 20)(4� d) + 4(6N + 11)�

�

32(N � 1)

; (15.22)

at lowest order for N > 1. It would be useful to examine the GM

singularities of the paramagnetic phase in this approach, and to compute

the value of ~z: this is an interesting possibility for future work, and could

lead to further insight on the validity of the �

�

expansion.

15.3.1 Metallic systems

The above �eld theoretic analysis can be easily extended to the random

case of the transitions of metallic systems considered in Chapter 12.

The central di�erence from the Ising/rotor models, as in the pure case,

is that the frequency dependent !

2

term in the propagator for the order

parameter gets replaced by a j!j term as in (12.10). In this manner, the

replicated �eld theory (15.16) generalizes to

S

Hd

=

Z

d

d

k

(2�)

d

T

X

!

n

1

2

�

k

2

+ j!

n

j+ r

�

j�

�a

(k; !

n

)j

2

+

u

4!

Z

d

d

xd�(�

2

�a

(x; �))

2

�

�

2

2

Z

d

d

x

Z

d�d�

0

X

a;b

�

2

�a

(x; �)�

2

�b

(x; �

0

): (15.23)

This theory has been analyzed in a double expansion in (4 � d) and �

�

in Ref [272].

In the following two sections of this chapter we will focus on two

simpler models which are amenable to an essentially exact analysis. Both

models are restricted to the Ising case N = 1 and have very strong GM

singularities. We will be able to explicitly follow their evolution upon the

approach to the critical point: we will �nd that in these cases the GM

singularities in fact become the critical singularities, and the resulting
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dynamic scaling is quite di�erent from the one suggested above in (15.22)

by the small �

�

expansion above. Interpretations and attempts at a

synthesis will follow in the �nal section.

15.4 Quantum Ising models near the percolation transition

We will consider here a special limiting case of the quantum Ising model

H

Id

in (15.1). Consider the following probability distribution of the

exchange interactions

J

ij

=

�

0 with probability p

J with probability 1� p

; (15.24)

and let us choose, for simplicity, all the transverse �elds g

i

= g site

independent (the results discussed below can be shown to also hold for

a random distribution of g

i

). So two neighboring sites either interact

with an exchange J (such sites are `connected') or they have no direct

coupling. Sets of mutually connected sites from clusters, and a lot is

known about the geometry of such clusters in d spatial dimensions|

this is the geometrical `percolation' problem, and we will quickly review

some needed results for percolation theory in Section 15.4.1. This sharp

separation of sites into sets of disconnected clusters is an important

simplifying feature, and will allow us obtain a number of exact properties

of the quantum critical point for general d: this simpli�cation clearly

relies upon the fact J

ij

becomes precisely zero with probability p. After

our review of percolation in Section 15.4.1, we will consider the classical

Ising model (with g = 0) at non-zero T in Section 15.4.2 and �nally

consider the non-zero g case in Section 15.4.3.

15.4.1 Percolation theory

Removing bonds on a lattice with probability p (see (15.24)) yields

the statistical problem of the geometry of connected clusters on the

diluted lattice. This has been reviewed in the book by Stau�er and

Aharony [476], and we will quote some needed results. There is a criti-

cal p

c

, such that for p > p

c

there are (in the thermodynamic limit) only

connected clusters of a �nite size, while for p < p

c

there is a thermo-

dynamically large connected cluster. Right at p = p

c

, there are a large

number of clusters with a broad distribution of sizes. These clusters are

known to have a fractal structure. Though no cluster is thermodynam-

ically large (i.e., the ratio of the number of sites in any cluster to the
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total number of sites in the system tends to zero in the thermodynamic

limit), there will be an in�nite connected cluster with a fractal dimen-

sion d

f

< d). An important fact about the critical percolating cluster is

that it consists of arbitrarily long one-dimensional segments which are

crucial for its connectedness. Breaking these segments splits the cluster

into two disjoint units.

For p > p

c

there is a �nite probability that any given site belongs to

the in�nite cluster; this probability vanishes as p& p

c

with the power-

law � (p

c

� p)

�

p

. We can also consider the probability, P (N; p) that

any site belongs to �nite, large cluster of N sites; for p close to p

c

this

satis�es the scaling form

P (N; p) � N

1��

G(N=�

d

f

) (15.25)

where � � jp�p

c

j

��

p

is a characteristic �nite cluster size which diverges

at p = p

c

, � , d

f

, and �

p

are universal critical exponents, and G is a

universal scaling functions. The exponents and scaling functions have

been computed either exactly or numerically in d = 2 and 3, and we will

simply treat them here as known quantities. For some of our later results,

we also need to the limiting form of the function G(y) ; it approaches 1

for y � 1, while for y � 1,

G(y; p > p

c

) � y

��+�

e

�c

+

y

G(y; p < p

c

) � y

��

0

+�

e

�c

�

y

1�1=d

(15.26)

where � and �

0

are additional known exponents.

Finally, we will also need information on the correlation between pairs

of sites. For p � p

c

the probability that two sites belong to the same

cluster decays for large x as � x

�d+2��

p

F (x=�) where �

p

is another

exponent (2�

p

= (d� 2 + �

p

)�

p

) and F a scaling function.

15.4.2 Classical dilute Ising models

We warm up with a discussion of the properties of the classical Ising

model, g = 0, and nonzero T ; its phase diagram is shown in Fig 15.1.

At p = 0, as T is increased, there is a phase transition from an ordered

state to a disordered one (See Fig 15.1). On the other axis, when T = 0

there is a percolation transition at p = p

c

; this transition coincides

with loss of magnetic long range order, as there is no in�nite cluster,

and hence no spontaneous magnetization for p > p

c

. The boundary

of critical temperatures T = T

c

(p) approaches zero at p = p

c

as T

c

�
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p

T

pc

Magnetic
order

Thermal
Paramagnet

Fig. 15.1. Phase diagram of the classical dilute Ising model at �nite temper-

ature. The dilution probability is p. The phase boundary goes to zero as

p! p

c

� as T

c

� 1= ln(1=(p

c

� p)).

ln(1=(p

c

�p)). These results can be understood in the following way. As

we mentioned earlier, the critical percolating cluster consists of a number

of arbitrarily large one-dimensional segments. These segments are the

weakest links in the cluster; correlations in the cluster will be destroyed

if they are destroyed along the segments. From the low temperature

behaviour of the classical Ising chain in Section 2.1, we know that any

�nite T will destroy correlations in a large segment over a length scale

�

T

that is exponentially large in 1=T . Now consider the in�nite cluster

at p < p

c

. This resembles the critical clusters at scales � �, where

� � (p

c

� p)

��

p

is the percolation correlation length. At larger scales,

there is a crossover to the geometry of a d-dimensional lattice. Thus

thermal e�ects will destroy correlations in this cluster when �

T

� �

which leads to T

c

� ln(1=(p

c

� p)).

15.4.3 Quantum dilute Ising models

We are ready to consider the T = 0 properties of the quantum Ising

model for g 6= 0. Its phase diagram as a function of g and p is shown in

Fig 15.2. At p = 0, as g is increased, there is a T = 0 transition from

a magnetically ordered ground state to a quantum paramagnetic state
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p

g

pc

Magnetic
order

Quantum
Paramagnet

Mg M

Fig. 15.2. Phase diagram of the dilute Ising model in a transverse �eld (g) at

T = 0. The dilution probability is p. The multicritical point M is at p = p

c

,

g = g

M

. The quantum transition along the vertical phase boundary (g < g

M

,

p = p

c

) is controlled by the classical percolation �xed point at p = p

c

, g = 0;

quantum e�ects (due to a non-zero g) are dangerously irrelevant, and lead to

activated dynamic scaling near the g < g

M

, p = p

c

line.

which is in the universality class of the models of Part 2. On the other

axis, when g = 0, so that the system is classical, there is a percolation

transition at p = p

c

. For p < p

c

, for small enough g, the system retains

long range order. This is ultimately destroyed for some g > g

c

(p), with

g

c

(p) expected to be a monotonically decreasing function of p. On the

other hand, if p > p

c

, there is no long range order for any g.

We will now argue, as �rst noted by Harris [212, 478, 131], that the

phase boundary of Fig 15.2 remains vertical at p = p

c

for a �nite range

of g � g

M

; we will then show that a number of properties of the quantum

phase transition across this vertical phase boundary can be computed

exactly, as shown in Ref [455]. The system in fact remains critical along

the line p = p

c

, g < g

M

; to see this, note that, although there is no

thermodynamically large connected cluster at p

c

, there still is an in�nite

connected cluster with a fractal dimension smaller than d. The spins on

this cluster align together at g = 0. A small but non-zero g is not

su�cient to destroy this order on the critical cluster. That this is true

can be seen by the following argument: The critical cluster is de�nitely

more strongly connected than a one-dimensional chain of Ising spins.



414 Magnetic ordering transitions of disordered systems

Even in d = 1 where 
uctuation e�ects are strongest, a small g preserves

long-range order in the Ising spins, as we know from Chapter 4. Thus

a small g will certainly preserve the order in the critical cluster. Note

that the e�ects of quantum 
uctuations are thus quite di�erent from the

e�ects of thermal 
uctuations that we discussed in the previous section.

The root of this di�erence lies in the observation that while any amount

of thermal 
uctuations destroy the order in the d = 1 Ising chain, it

takes a �nite strength of quantum 
uctuations to do so. In fact, two

spins on any su�ciently large �nite cluster remain strongly correlated

with each other in space for small g. (Of course, for a �nite cluster there

will be no long-range correlation in time). The critical cluster eventually

loses order when g reaches g

M

.

Let us consider the equal-time two point spin correlation function

C(x; 0) (see (4.2)). Spins at points 0 and x are correlated only if they

belong to the same cluster; however, as argued above for g < g

M

, once

two spins are on the same cluster, they have an essentially perfect cor-

relation (normalized to unity) even if they are very far apart. So the

disorder-averaged C(x; 0) will be simply proportional to the probability

that the two spins are on the same cluster; by the results of Section 15.4.1

we can then conclude at p = p

c

and for h < h

M

, C(x; 0) � x

�d+2��

p

. So

this line is critical with exponents given by that of ordinary percolation.

We can also compute a variety of static, dynamic and thermodynamic

properties across the p = p

c

, g < g

M

critical line.

First some static properties. By precisely the same arguments as

those above for p = p

c

, we can conclude that for p � p

c

C(x; 0) �

x

�d+2��

p

F (x=�); so the o�-critical exponents and crossover functions

are also those of percolation. For p < p

c

, the spontaneous magnetization,

N

0

, is simply proportional to the probability that a given site lie on the

in�nite cluster, and so N

0

� (p

c

� p)

�

p

.

Now consider dynamic correlations. We will compute the low energy

part of the contribution to �

00

L

(!) by a cluster of N sites: the mean �

L

can then be computed by an average over P (N; p). The energy levels

of a cluster of N sites can be described for g � J as follows: The

two lowest levels correspond to the states of a single e�ective Ising spin

with magnetic moment � N in an e�ective transverse �eld g

e�;N

. For

large N , g

e�;N

can be estimated in N

th

order perturbation theory to be

~g exp(�cN), as discussed in Section 15.2. The quantities ~g and c are

of order h and ln(J=g) respectively but their precise values depend on

the particular cluster being considered. As the distribution of ~g and c is

not expected to become very broad near the transition, we will replace
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them by their typical values g

0

and c

0

respectively. Apart from these

two lowest levels, there are other levels separated from these by energies

� J . These can be ignored for the low energy physics, and for small

! � g, we only need to consider large clusters. Averaging over all sites

using P (N; p) as written in (15.25), we obtain

�

00

L

(!) �

Z

dN

N

��1

G(N=�

d

f

)�(! � g

0

e

�c

0

N

)

�

1

!(ln(g

0

=!))

��1

G

�

ln(g

0

=!)

c

0

�

d

f

�

(15.27)

This scaling form describing the dynamical properties across the verti-

cal transition line in Fig 15.2 is one of the central results of this section,

and reader should pause to consider its implications. Its most striking

feature is that the characteristic length � scales as a power of the log-

arithm of the frequency !; this is known as activated dynamic scaling,

and should be contrasted with the conventional behavior (considered in

Section 15.3) where ! � �

�z

. The exponent z is e�ectively in�nite if the

dynamic scaling is activated. In the present case, the critical point p = p

c

contains clusters of all sizes, and as we have already seen, the character-

istic excitation energy of a cluster of size L scales as exp(�cL

d

f

), which

indicates the origin of the activated scaling.

The explicit results for the function G in (15.26) allow us to study the

low energy spectrum across the transition. For p > p

c

we get

�

00

L

(!) �

!

d=~z�1

(ln(g

0

=!))

��1

(15.28)

which, apart from logarithms, is of the form (15.10) discussed earlier as

a consequence of GM singularities. The dynamic `exponent' ~z can be

explicitly computed, and we �nd

~z � �

d

f

; (15.29)

i.e., ~z diverges as we approach the quantum critical point. So the value of

lim

p&p

c

~z coincides with the activated dynamic scaling value of z =1.

Precisely at p = p

c

, the conventional dynamic scaling result (15.11) is

replaced here by

�

00

L

(!) �

1

!(ln(g

0

=!))

��1

: (15.30)

Finally, on the ordered side with p < p

c

, the presence of the in�nite

cluster (and the associated long range order) gives rise to a delta function
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at ! = 0; for ! 6= 0, �

00

L

(!) is still determined by contributions from the

�nite clusters, and we �nd

�

00

L

(! 6= 0) � (1=!)(ln(g

0

=!))

1��

0

exp

�

��(ln(g

0

=!))

1�1=d

�

(15.31)

with � � �

�d

f

(1�1=d)

. Again the system is gapless, re
ecting the GM

singularities of the ordered phase.

Now we turn to the thermodynamic properties. The magnetization in

response to a uniform external applied magnetic �eld h coupling to �̂

z

can be calculated similarly by an average over the response of clusters

of size N . For small h � g, only large clusters contribute, and the

magnetization per site is that of an Ising spin of magnetic moment N in

a transverse �eld g

e�;N

, and is therefore given by

M

N

(h) =

Nh

((Nh)

2

+ g

2

e�;N

)

1=2

(15.32)

Thus the total magnetization per site (after subtracting the regular con-

tribution of the in�nite cluster for p < p

c

) is

M(h)�M(h = 0) �

Z

dN

1

N

��1

G(N=�

d

f

)M

N

(h) (15.33)

The singular part therefore has the scaling form

M

sing

(h) �

1

(ln(g

0

=h))

��2

�

M

�

c

ln(g

0

=h)

�

d

f

�

(15.34)

with c a non-universal constant, and �

M

(y) a universal function which is

related to G(y) by �

M

(y) =

R

1

1

w

1��

dwG(wy). Now the consequence of

activated scaling is that a power of the logarithm of the �eld scales as the

correlation length. Using our earlier results for G, we can conclude that

for p > p

c

rises as a power of H , with a continuously varying exponent

which approaches 0 as p & p

c

, and so the linear susceptibility diverges

over a whole region. At p = p

c

the magnetization is a power of ln(1=h).

On the ordered side, p < p

c

, dM=dh � 1=h with weak corrections; thus

the linear susceptibility diverges in the ordered side as well.

What about the �nite T properties of this quantum Ising model ? For

the classical dilute Ising model at p = p

c

, the correlation length at �nite

T behaves as exp(constant=T ) . This is essentially due to the presence

of one dimensional segments in the critical percolating clusters. For the

quantum problem for g < g

M

, these one dimensional segments would

give rise to a thermal correlation length (�

T

) with a similar exponential

dependence on 1=T , and a prefactor that is a power-law in T ; this is the
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p

T

pc

Magnetic
order

Paramagnet

Fig. 15.3. Finite temperature phase diagram for g < g

M

. The dashed lines

(T � 1= ln(1=jp�p

c

j)) represent crossovers from the high T regime, character-

ized by spin 
uctuations on the critical in�nite cluster, to the low T regimes.

The solid line for p < p

c

is the phase transition (T = T

c

� 1= ln(1=(p

c

� p))

where long range order is destroyed.

behavior in the \high T" region of Fig 15.3. Away from the critical point,

the crossovers are as shown in Fig 15.3. The low T behavior appears

when � � �

T

, or T � ln

�1

(1=(jp � p

c

j). On the paramagnetic side, the

low T system is described well as a collection of rigid Ising clusters with

e�ective transverse �elds and a size distribution as before; this leads, for

instance, to a linear susceptibility �

T

� T

�1+�

(up to log corrections)

with � � �

�d

f

. On the ordered side, there is a �nite temperature phase

transition; as in the classical case, as p% p

c

, the transition temperature

falls to zero as T

c

� ln

�1

(1=(p

c

� p)). Finally, it would be interesting

to understand the real time dynamics at non-zero T , along the lines of

our analysis in Part 2: this remains an open problem, of considerable

experimental interest.

To summarize, we have presented a simple example of a random quan-

tum transition in dimensions d > 1 which exhibits activated dynamics

scaling with ln(1=energy scale) � �

d

f

. There were Gri�ths-McCoy re-

gions on either side of the transition, with a singular density of states

and a diverging susceptibility. Theoretically, an important feature of

this transition is that it was controlled by a classical, static, percolation

�xed point at g = 0, p = p

c

, with dynamic, quantum 
uctuations being
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\dangerously irrelevant". To see this, consider again the calculation of

the �eld dependent magnetization at the critical point. At the �xed

point with g = 0, all the spins in the system align for any strength of

the external �eld and the magnetization per spin would be 1 for any

(positive) value of the �eld. This is however not correct. Quantum


uctuations prevent spins belonging to small clusters from contributing

anything to the magnetization. Spins belonging to large clusters how-

ever contribute an amount of order 1. The crossover occurs for a cluster

size N

h

� ln(1=h). The leading scaling result is obtained by aligning all

clusters with size bigger than N

h

. Similarly for the dynamics, the spin

autocorrelation function is clearly just 1 at all times at the �xed point

as it is classical. (Hence, we may call such 
uctuationless �xed points as

static). Again this is not correct, and we need to include the irrelevant

quantum 
uctuations to get the results we presented earlier.

15.5 The disordered quantum Ising chain

This section will examine H

Id

in (15.1) in dimension d = 1. In this

case, as was shown by D.S. Fisher [152, 154], we will �nd that for a

general distribution of the couplings g

i

, J

i;i+1

the quantum phase tran-

sition exhibits activated dynamic scaling very similar to that introduced

in Section 15.4 for models on percolating clusters. This result is estab-

lished using a renormalization group analysis of the entire probability

distributions of the g

i

and J

i;i+1

, and relies on the fact that these prob-

ability distributions become extremely broad at low energy scales. So

if we focus on the response at a given energy scale, !, all couplings of

nearby sites are either much smaller or much larger than !: this sug-

gests we can set all the small couplings to zero and tightly couple the

spins into clusters with the large couplings. This clustering now appears

quite similar to the percolation model of Section 15.4, and explains the

appearance of activated dynamic scaling in the present situation.

We begin by setting up the renormalization group analysis which will

establish the above claims. We will assume that the distribution of

couplings is broad to begin with: subsequent analysis shows that this

assumption self-consistent, and the resulting renormalized distributions

have a large basin of attraction. The basic idea behind the procedure,

�rst used by Dasgupta and Ma[319, 118] in their study of the random

antiferromagnetic spin chain, is to successively decimate the strongest
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coupling


 � maxfg

i

; J

i;i+1

g; (15.35)

in the chain and get an e�ective Hamiltonian for the low energy degrees

of freedom. Consider the case when the maximum coupling is a �eld,

say g

i

. We �rst solve for the part of the Hamiltonian involving g

i

: the

ground state is the symmetric combination j+i

i

= (j "i

i

+ j #i

i

)=

p

2,

while the excited state j�i

i

= (j "i

i

� j #i

i

)=

p

2 is an energy 2g

i

higher

(see Section 4.1.1). As g

i

is the largest energy around, it is legitimate

to project the remaining Hamiltonian into the space with the state at i

constrained to be j+i

i

, thereby eliminating the site i. This can be done

in a simple perturbation theory in 1=g

i

, and to lowest non-trivial order

the result is a new e�ective bond between the sites i � 1 and i + 1 of

strength

J =

J

i�1;i

J

i;i+1

g

i

(15.36)

We now have a new random quantum Ising chain with one less site, and

one less bond.

On the other hand, if the maximum coupling is a bond, say J

i;i+1

,

we �rst solve for the part of the Hamiltonian involving J

i;i+1

. This is

just the exchange interaction between the spins at sites i and i + 1:

its ground state is doubly degenerate, j "i

i

j "i

i+1

or j #i

i

j #i

i+1

, and

the two excited states with the spins oriented in opposite directions are

energy 2J

i;i+1

higher (see Section 4.1.2). Clearly, we may think of the

two degenerate ground states as corresponding to the two states of a

single e�ective Ising degree of freedom with a magnetic moment equal

to the sum of the moments of the individual spins. For large J

i;i+1

, it is

legitimate to project the remaining Hamiltonian into the space with the

spins at i and i + 1 constrained to be in the same state. Again, we do

this in second order perturbation theory. The result is that the two sites

i and i+1 are replaced by a single Ising spin with an e�ective transverse

�eld of strength

g =

g

i

g

i+1

J

i;i+1

(15.37)

To this order of perturbation theory, the interaction of this e�ective site

with the neighboring spins remains unmodi�ed. We now again have a

random quantum Ising chain with one less site, and one less bond.

This decimation procedure is the basic renormalization group transfor-

mation. The strategy is to iterate this transformation till the maximum
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remaining coupling is of the order the energy at which we wish to probe

the system. Note that no correlations are introduced between any of

the couplings by this procedure. Thus the di�erent bonds and �elds

continue to be independent random variables, though with probability

distributions that are renormalized.

It is convenient to convert these recursion relations into 
ow equations

for the distributions. From the form of the recursion relations, it is clear

that it is natural to work in terms of the logarithmic variables: we

therefore de�ne

� = ln(


I

=
)

� = ln(
=J) � 0;

� = ln(
=g) � 0 (15.38)

where 


I

is the maximum coupling in the initial distributions, and 


is the maximum at any given stage of the renormalization group. We

will denote the normalized probability distribution for the exchange con-

stants by P (�; �) (satisfying

R

1

0

d�P (�; �) = 1), and similarly the prob-

ability distributions for the transverse �eld by R(�; �). As we reduce

the high energy cuto� 
, notice that � becomes larger. The ultimate

low energy is therefore controlled by the limit � ! 1, and we will be

interested in the forms of the distributions P and R in this limit.

This paragraph contains a few intermediate steps showing how to tran-

scribe the transformations (15.36) and (15.37) into partial di�erential

equations for P (�; �) and P (�; �): readers not interested in the details

can move on to the next paragraph. Let N (�) be the total number of

clusters at scale �, N

B

(�;�) be the total number of bonds of strength

� at this scale, and N

S

(�;�) the total number of sites with transverse

�eld of strength �. Then, by de�nition

P (�; �) =

N

B

(�;�)

N (�)

R(�; �) =

N

S

(�;�)

N (�)

(15.39)

Now perform the basic renormalization group transformation by increas-

ing � by an in�nitesimal amount d�. This involves eliminating bonds

with � � 0 and sites with � � 0. In terms of 


I

instead of 
 we have

� = ln(


I

=J) � �, and so when � is changed, � changes by d� = �d�,

and similarly for �. Therefore all bonds and sites with 0 < �; � < d�

are eliminated which implies

N (� + d�) = N (�) � d� [N

B

(0;�) +N

S

(0;�)] : (15.40)

Now consider the changes in N

B

(�;�). The transformation (15.36) will
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remove two bonds and add a new one: this leads to

N

B

(�;� + d�) = N

B

(� � d�;�) + d�

Z

d�

1

d�

2

N

S

(0;�)�

P (�

1

; �)P (�

2

; �) [�(� � �

1

� �

2

)� �(� � �

1

)� �(� � �

2

)] ; (15.41)

the �rst term within the square brackets represents the new bond which

has been created and thus increases the probability (the delta-function

multiplying it is the logarithmic version of (15.36)), while the next two

terms represent the two eliminated bonds. A very similar result holds

for N

S

from the transformation (15.37).

By combining (15.39-15.41) we obtain the required di�erential equa-

tions for the probability distributions

@P (�; �)

@�

=

@P (�; �)

@�

+ P (�; �)(P (0; �)�R(0; �))

+R(0; �)

Z

d�

1

d�

2

P (�

1

; �)P (�

2

; �)�(� � �

1

� �

2

)

@R(�; �)

@�

=

@R(�; �)

@�

+ R(�; �)(R(0; �)� P (0; �))

+P (0; �)

Z

d�

1

d�

2

R(�

1

; �)R(�

2

; �)�(� � �

1

� �

2

)(15.42)

We are now faced with the following applied mathematics problem: given

two initial arbitrary distributions P (�; �) and R(�; �), evolve them with

increasing � under (15.42)|is it possible to make any general statements

about possible universal forms of these distributions in the limit � !

1 ? This problem was solved by Fisher [154] through some rather

intricate, but in principle straightforward, mathematical analysis. We

shall not be interested in the details of this analysis here, but will simply

assert the main results which are then not di�cult to verify a posteriori.

It was found that for almost all initial conditions, the ultimate 
ow

is towards one of two classes of probability distributions. In the �rst,

most exchange constants are larger than all of the transverse �elds, and

this clearly represents a system which will then acquire magnetic long-

range order in its ground state, as in Section 4.1.2. Conversely, in the

second, most transverse �elds are larger than all of the exchange con-

stants, and this corresponds to a system with a quantum paramagnetic

ground state, as in Section 4.1.1. It is of interest to �rst examine the

critical point between these two classes of solutions, in which case the

two distributions P and R turn out to have precisely the same form.

Indeed, by setting P = R, it can be shown that in the limit � ! 1
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essentially all solutions of (15.42) are attracted to a unique �xed point

distribution; this distribution takes the scaling form

P (�; �) =

1

�

P

�

�

�

�

R(�; �) =

1

�

R

�

�

�

�

(15.43)

and the scaling functions take the simple explicit form

P(y) = R(y) = e

�y

(15.44)

The reader is invited to verify that (15.44) and (15.43) constitute exact

solutions of (15.42). Thus even in terms of the logarithmic variables �

and �, the distributions become extremely broad at low energies (the

width of the distribution is � �, which rises inde�nitely as we go to lower

energies). This broad distribution justi�es a posteriori the second-order

perturbation theory used to obtain (15.36) and (15.37): if we choose

the biggest transverse �eld g

i

(say), it is overwhelmingly likely that

the exchange couplings J

i�1;i

and J

i;i+1

to the neighboring sites will

be much smaller. This also suggests that the results obtained by the


ow equations (15.42) are asymptotically exact. In terms of the original

physical couplings J and g, the �xed point results (15.43) and (15.44)

correspond to the distribution

P (J) �

1

J

1�1=�

; (15.45)

and similarly for g. Note that the power in the denominator approaches

1 as � approaches 1. Thus the distribution is highly singular at the

origin - in fact for large enough �, the expectation value of 1=J will be

divergent. It is this extreme broadness of the distribution that enables

obtaining physical properties of the system with the critical distribution

through simple calculations, as we will see shortly.

Let us consider perturbations of this critical solution. Linearizing

the 
ow equations in the vicinity of the �xed point yields, as expected,

a single relevant perturbation whose strength we parameterize by the

coupling r; thus as in Chapter 8, r will represent the deviation from

the critical point, with r > 0 putting the system in the quantum para-

magnet. Fisher [152, 154] was also able to �nd a complete solution of

(15.42) valid in the limit �!1, jrj ! 0, but with �jrj arbitrary. These
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solutions are expressed in scaling forms which generalize (15.43):

P (�; �) =

1

�

P

�

�

�

; r�

�

R(�; �) =

1

�

R

�

�

�

; r�

�

; (15.46)

and the explicit solutions for the scaling functions are

P(y; y

0

) =

2y

0

e

2y

0

� 1

exp

�

�

2yy

0

e

2y

0

� 1

�

R(y; y

0

) = P(y;�y

0

) (15.47)

Again, the reader can verify that (15.46) and (15.47) constitute exact

solutions of (15.42). So we have available a family of probability dis-

tributions, parameterized by the single tuning parameter r; there is a

quantum critical point at r = 0 separating the magnetically ordered

phase (r < 0) from the quantum paramagnetic phase (r > 0).

Let us look at the explicit predictions of the above results for the

low energy properties of the quantum paramagnet: for this we place

ourselves in the paramagnet by �xing r > 0, and then access low energies

by sending � !1: recall that this was the order of limits discussed in

Section 15.2. Then we �nd the probability distribution of transverse

�elds to be given by

P (g) � g

�1+2�

; (15.48)

while all exchange constants are essentially at zero energy with P (J) =

�(J). The spins are therefore e�ectively decoupled; each site can be

independently diagonalized, and has two energy levels separated by 2g.

From this we can determine the leading low energy behavior of the av-

erage local spectral density �

00

L

(!). A naive calculation, using the form

(4.20) suggests that

�

00

L

(!) � !

�1+1=~z

; (15.49)

where we have used the notation suggested by (15.10), and the value of

the exponent ~z is given by

~z =

1

2r

: (15.50)

However, this result is not entirely correct: we also need to know the

probability that any given original spin �̂

z

i

will be active in the set of

e�ective spins upon which transverse �elds given by (15.48) act, i.e.,

ensure that this spin has not been decimated in the renormalization
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group transformation. We do not have the information yet to compute

this precisely (although it can be reconstructed from Ref [154]), but it

will become clear from the analysis below that the only consequence of

rectifying this omission is to change (15.49) by powers of logarithms,

as in (15.10). So our result for �

00

L

(!) is consistent with the general

arguments of the GM singularities. Further we have found that the

`dynamic exponent' ~z diverges as we approach the critical point with

r ! 0. This is also precisely the behavior found in (15.29) for the dilute

quantum Ising models in d > 1 in Section 15.4. By analogy, we may then

expect that the present model also exhibits activated dynamic scaling

with the critical dynamic exponent z =1; further, at the critical point

r = 0, we may expect from (15.49) that �

00

L

(!) � 1=! times powers of

ln(1=!), as in (15.30).

To truly establish the existence of activated dynamic scaling, we need

information about length scales. In particular, we need to know the

average spacing between the spins when we have renormalized down to

a characteristic energy scale ! � 


I

e

��

. We can obtain this information

by simply keeping track of the total number of spins, N (�), that have

not been decimated at a scale �. From (15.40) and (15.39) we know that

this quantity satis�es the di�erential equation

dN (�)

d�

= �(P (0;�) +R(0;�))N (�): (15.51)

Using the result (15.43) we can now conclude that at the critical point

r = 0

N (�) �

1

�

2

: (15.52)

So the average spacing between the spins increases as �

2

; we may identify

this as the characteristic length scale, `, and we have

` � �

2

� [ln(1=!)]

2

: (15.53)

This is precisely the behavior characteristic of activated dynamic scaling,

as exhibited in the scaling form (15.27). We can now also obtain the

correlation length, �, as the system moves away from criticality. From

the scaling (15.46), we know that � � 1=r, and therefore from (15.53)

we have

� � �

2

�

1

r

2

: (15.54)

This gives us an exponent � = 2, which saturates the bound (15.5) in
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d = 1. The length � actually sets the scale for the decay of the disorder-

averaged correlation functions; typical spin correlations (i.e., the most

probable) however decay at a di�erent length scale which diverges with

exponent 1 [458]. For the dilute Ising model of Section 15.4, the typ-

ical spin correlations were simply zero, as two spins chosen at random

typically belong to di�erent clusters.

Fisher [154] has obtained far more precise information on the nature of

the spatial correlations. We will not discuss the details of this here, but

will review the general strategy and indicate some further results. So far

we have only kept track of the probability distributions of the coupling

constants, but it is also possible to include additional information about

the nature of the renormalized spins as the decimation proceeds. In

particular, we can associate with each spin a magnetic moment m

i

.

Initially, all spins have m

i

= 1. However when we decimate a large

J

i;i+1

, the two spins at i and i+1 combine to form a single e�ective spin

with moment m = 2. So, in general, parallel with the recursion relation

(15.37) for each bond decimation, we have the recursion relation for the

magnetic moments

m = m

i

+m

i+1

: (15.55)

In addition, we can also associate a length, `

B

with each bond and a

length `

S

with each spin. We begin with a spin chain with unit lattice

spacing: let us associate a length of 1=2 with each spin and with each

bond. Then, when we decimate the bond J

i;i+1

we get a new spin

of length 3=2. In general, the recursion relation corresponding to the

decimation (15.37) is

`

S

= `

S;i

+ `

S;i+1

+ `

B;i;i+1

(15.56)

Similarly, along with the decimation of the spin with transverse �eld g

i

in (15.36) we have the length recursion

`

B

= `

B;i�1;i

+ `

B;i;i+1

+ `

S;i

: (15.57)

We can transcribe (15.55-15.57) into renormalization group 
ow equa-

tions, just as we mapped (15.36) and (15.37) into (15.42). For this we

generalize the earlier probability distributions for the couplings, P (�; �)

andR(�; �) into joint probability distributions P (�; `

B

; �) andR(�; `

S

;m; �).

The joint distributions account for the fact that the length or moment of

any given spin is certainly correlated with the size of the transverse �eld

acting on it|a spin with a very weak transverse �eld must have been ob-

tained after substantial decimation, and is more likely to be longer and
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have a larger moment; similarly for the bonds. However, the couplings,

lengths and bonds of neighboring spins remain uncorrelated, as they

have been obtained by independent decimation steps. The transforma-

tions (15.36), (15.37), (15.55), (15.56) and (15.57) imply 
ow equations

for P (�; `

B

; �) and R(�; `

S

;m; �) which are very similar to (15.42); we

will not write them out explicitly but note that the �rst two terms on

the right hand sides have essentially the same form (the distributions

only have additional obvious arguments), while the last term has ad-

ditional integrals over ` and/or m along with delta functions imposing

(15.55)-(15.57).

A thorough analysis of these new 
ow equations has been carried out

by Fisher [154]. Here we simply note that in the limit � ! 1 the

distribution functions satisfy scaling forms which generalize (15.46):

P (�; `

B

; �) =

1

�

3

P

�

�

�

;

`

B

�

2

; r�

�

R(�; `

S

;m; �) =

1

�

3+�

R

�

�

�

;

`

S

�

2

;

m

�

�

; r�

�

: (15.58)

The prefactor of the power of � can be deduced simply form the re-

quirement that P and R are normalized probability distributions. The

scaling ` � �

2

was already obtained in (15.53), but also follows from

an analysis of the present 
ow equations. Finally, there is a non-trivial

exponent � which controls the scaling of m; it di�ers from that of `

because of the di�erence in the structure of (15.55) from that of (15.56)

and (15.57)|it was shown by Fisher that � = (

p

5 + 1)=2, the golden

mean.

We can use these results to analyze the response to a uniform �eld h

coupling to �̂

z

, as was also done for the dilute Ising model in d > 1 below

(15.32). Consider (at T = 0), the magnetizationM(h; r) of the system as

a function of external applied �eld h. In the presence of a magnetic �eld

h, the energy levels of an otherwise-free cluster of magnetic moment

m split into two with an energy splitting E

h

= 2mh. We stop the

renormalization when the maximum coupling 
 � E

h

. The extreme

broadness of the distribution implies that almost all the clusters which

have already been eliminated have transverse �elds considerably bigger

than E

h

while almost all that are yet to be eliminated have transverse

�elds considerably smaller than E

h

. Therefore, an asymptotically exact

expression for M(h; r) is obtained by aligning all the remaining clusters
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at 
 = E

h

in the direction of the magnetic �eld. Thus

M(h; r) = �m� (total number of active spins

at scale �

h

= ln(D

h

=h)) + : : : (15.59)

where �m andD

h

are non-universal constants. This total number is easily

reconstructed from the probability distributions, and we therefore have

the scaling form

M(h; r) = �mN (�

h

)

Z

d� d` dm

m

�

3+�

R

�

�

�

;

`

�

2

;

m

�

�

; r�

�

= �m�

��2

h

�

M

(r�

h

)

=

�m

(ln(D

h

=h))

2��

�

M

�

ln(D

h

=h)

�

1=2

�

(15.60)

We see that this scaling form is identical in structure to (15.34) of the

d > 1 dilute Ising model: it is clear that this is another consequence of

activated dynamic scaling. Using standard scaling arguments, we can

obtain the following results from (15.60): as we approach the transition

from the ordered side, the spontaneous magnetization vanishes as N

0

�

jrj

�

with � = 2��; right at the critical point, M

cr

(h) � (ln(D

h

=h))

��2

.

Both forms are identical to those in Section 15.4.3.

Similar arguments can be made to obtain the exact scaling forms for

the T dependence of the linear susceptibility �

h

. At the critical point,

�

h

(T ) � 1=T (ln(1=T ))

2�2�

while it has power-law T dependence in the

ordered and disordered phases, re
ecting the GM singularities.

15.6 Discussion

We have met two rather distinct scenarios for quantum critical points

in random Ising/rotor models in this chapter. Let us review their main

properties in turn.

The �rst was discussed in Section 15.3. For the most part, the scaling

structure of the quantum critical point was similar to those discussed

in Part 2 for clean systems. Dynamic scaling was conventional, with

characteristic length (`) and frequency (!) scales at the critical point

obeying ! � `

�z

, with z the usual dynamic critical exponent. The

phases 
anking the critical point exhibited Gri�ths-McCoy singularities

in their low energy behavior. For N � 2 these were only very weak

essential singularities. However, they were stronger for N = 1, and led

to a power-law divergence in the low energy density of states which we
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characterized by the exponent ~z. The value of ~z varied continuously in

the phases, and it remains an open question whether it approaches z as

we move towards the critical point: there is no obvious mathematical

inconsistency with two values remaining di�erent, as they characterize

regions of the spectrum reached by distinct orders of limits.

The second scenario of activated dynamic scaling was realized in two

solvable models in Sections 15.5. This is a special property of the N = 1

case and has been argued to occur for the generic N = 1 quantum

transition in d = 1 (Section 15.5); it was also found for a rather special

dilute Ising model in all d > 1 in Section 15.4, but is only expected to

occur for the generic transition only for low values of d, possibly d = 2.

The characteristic properties of activated dynamic scaling is that the

diverging scales ` and 1=! of the critical point are related by ln(1=!) �

`

z

a

, where z

a

is now the universal dynamic exponent. There were very

strong power-law GM singularities on either side of the transition, and

the exponent ~z diverged as ~z � �

z

a

upon the approach to the critical

point.

It is interesting that both solvable models belonged to the second class

showing activated behavior. We believe this is not an accident, and the

activated scaling is a simplifying physical property which leads to the

solvability. In particular, there is a clear separation of scales at which

the predominant e�ects of quantum and disorder-induced 
uctuations

appear. At any given energy scale, the underlying quantum mechanics

mainly serves to separate the system into mutually decoupled clusters of

`active' spins: the subsequent physical properties are then determined

by the random geometry and statistics of these active clusters. The

spins in each cluster are tightly coupled and each contributes a term of

order unity to the magnetization. As we approach the critical point,

the contribution of the active spins to the magnetization does not go to

zero (as it would if quantum mechanics was playing a more central role);

rather the vanishing of the magnetization at the critical point is due to

the vanishing of the number of active spins at the lower energy scales.

Further progress in this �eld would be greatly aided by solvable mod-

els with disorder and interactions which exhibit conventional dynamic

scaling.

15.7 Applications and extensions

The exact results for the random quantum Ising chain in Section 15.5

have been very successfully compared with numerical computations [540,
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538, 155]. Closely related methods have also been applied to other one

dimensional random spin models: these include S = 1=2 Heisenberg and

XY spin chains [227, 153, 222], Potts and clock models [454], S = 1

antiferromagnetic spin chains [233, 234], and the experimentally real-

izable case of chains with mixed ferromagnetic and antiferromagnetic

exchange [171, 528, 170].

Turning to higher dimensions, the quantum transition in the random

Ising model in d = 2 has recently been studied in sophisticated Monte

Carlo simulations [235, 383, 408], and there are indications that the acti-

vated dynamic scaling behavior is generic. As we noted earlier, the large

N limit of the random quantum rotor model was studied in Ref [270] by

a renormalization group analysis, but no stable �xed point was found;

the quantum phase transition of this model has been studied numeri-

cally [210] and by an alternative renormalization group de�ned directly

on the saddle-point equations [219].

In three dimensions, random Heisenberg antiferromagnets have been

studied by the renormalization group of Section 15.5 and applied to

properties of doped semiconductors [52].

Random versions of the boson models of Chapters 10 and 11 have also

been studied [160, 179, 472, 523, 324] and are of considerable experimen-

tal importance, as was noted in Sections 9.5 and 10.3.



16

Quantum spin glasses

In this chapter, we want to move beyond the simplest disordered models

considered in Chapter 15, and consider systems which have magnetically

ordered states which are rather more complicated than those in which

the average moments are in a regular arrangement, as in (15.3). In the

context of the Ising/rotor models, such states can be obtained by relax-

ing the constraint J

ij

> 0 and allowing the J

ij

to randomly 
uctuate

over both negative and positive values (we can always choose the g

i

to

be positive by a local rede�nition of the spin orientations, and will as-

sume this is the case below). In particular, we will be interested here in

the magnetically-ordered \spin-glass" state in which orientation of the

spontaneous moment varies randomly from site to site, with a vanishing

average over sites, h�̂

z

i

i = 0 (or h
^
n

i

i = 0); such states are clearly special

to disordered systems. For classical spin systems, i.e., models (15.1)

and (15.2) at g

i

= 0, such ordered states have been reviewed at length

elsewhere [54, 150, 539]. The structure of the ordered spin-glass phases

of quantum models is very similar, and so this shall not be the focus of

our interest here. Rather, we shall be interested in the quantum phase

transition from the spin glass to a quantum paramagnet, and the na-

ture of the �nite temperature crossovers in its vicinity, where quantum

mechanics plays a more fundamental role.

The quantum Ising/rotor models of Part 2 shall also form the basis

of much of our discussion of quantum spin glasses. However, in parallel,

we will also consider the appearance of spin-glass order in the metallic

systems of Chapter 12. So one of our interests shall be the transition

from a paramagnetic Fermi liquid to a spin density glass state: such a

state is characterized by the analog of the order parameter (12.2) for the

ordinary spin density wave state, but now the orientation and magnitude

430
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of �

�

varies randomly in space, along with random phase o�sets in the

cosine.

We begin by introducing the order parameter which characterizes a

spin-glass phase [54, 150] using, for now, the familiar terrain of the quan-

tum Ising/rotor models. While a spin-glass has no magnetic moment

when averaged over all sites, its characteristic property is that each spin

has a de�nite orientation whose memory it retains for all time. We can

use this long-time memory to introduce the Edwards-Anderson order

parameter, q

EA

, de�ned, for N = 1, by

q

EA

= lim

t!1

h�̂

z

i

(t)�̂

z

i

(0)i; (16.1)

and similarly using rotor variables for N > 1. For each site i the

long time limit gives the square of the local static moment; this is non-

negative, and so q

EA

has a non-zero average in the spin glass phase.

One of the primary objectives of the theory of quantum spin glasses is

to understand the nature of dynamics of spin 
uctuations in the vicinity

of the quantum-critical point where q

EA

vanishes. As in Chapter 15,

we expect Gri�ths-McCoy singularities to appear in both the spin glass

and quantum paramagnetic phases. Reliable information on these and

the critical singularities for low dimensional systems with short-range

interactions is so far only available through numerical simulations. A

great deal of work has also been done on simpli�ed models with in�nite-

range interactions which display spin glass phases [82, 185, 509, 58, 340,

535, 364, 279]: the solution of classical in�nite-range models was an

important step in the development of spin glass theory [54, 150]. Here,

we shall restrict our attention to the development of a mean �eld theory

of the quantum critical point (and its vicinity) between a spin glass and

a paramagnet in the systems noted earlier. The physical properties of

the mean-�eld theory are closely related to those of the models with

in�nite-range interactions, but the former also o�ers a formalism for

understanding 
uctuations in systems with shorter-range interactions;

initial attempts at understanding such 
uctuations have been made [405,

437], but shall not be discussed here.

We will present a derivation [535, 405] of the e�ective action con-

trolling quantum 
uctuations of the spin glass order parameter in Sec-

tion 16.1. The mean �eld solution of this e�ective action and its physical

properties will then follow in Section 16.2.
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16.1 The e�ective action

We will begin by considering, for de�niteness, the appearance of spin-

glass order in the quantum rotor Hamiltonian H

Rd

in (15.2); the results

will also apply to the Ising case simply by restricting the O(N) vector

indices �; � : : : to just one value. The extension to the metallic systems

of Chapter 12 will follow in Section 16.1.1.

We set all the g

i

= g and take the J

ij

to be distributed independently

according to the Gaussian probability

P (J

ij

) � exp

 

�

J

2

ij

2J

2

!

: (16.2)

We average over this distribution using the replica method, which was

introduced brie
y in Section 15.3 (see Ref [150] for a more complete

treatment). The averaged, replicated partition function becomes

Z

n

=

Z

Dn

i�a

�(n

2

i�a

� 1) exp

2

4

�

1

2g

Z

d�

X

i;a

�

@n

i�a

@�

�

2

�

J

2

2

X

<ij>

Z

d�

1

d�

2

X

ab

n

i�a

(�

1

)n

j�a

(�

1

)n

i�b

(�

2

)n

j�a

(�

2

)

3

5

;(16.3)

where i; j are site indices, �; � are O(N) vector indices, and a; b are

replica indices; we employ the usual summation convention over re-

peated O(N) vector indices, but all other summations are explicitly

noted. We now want to manipulate this into a form in which the on-

site spin correlations responsible for the spin glass order in (16.1) are

somehow related to a primary `order parameter' �eld; to this end we use

the Hubbard-Stratanovich transformation, which we �rst met in Sec-

tion 10.2, to decouple the quartic term in (16.3. We choose among the

several possible the four spin operators by picking out the one which

emphasizes the correlations appearing in (16.1); this gives us

Z

n

=

Z

DQ

ab

i��

exp

0

@

�

Z

d�

1

d�

2

2J

2

X

ijab

Q

ab

i��

(�

1

; �

2

)K

�1

ij

Q

ab

j��

(�

1

; �

2

)

1

A

�

Y

i

Z

i

[Q

i

] (16.4)

where K

ij

is the connectivity matrix of the lattice (its matrix elements

are unity for sites i,j which were coupled by a random exchange, and

zero otherwise), and the subsidiary partition function Z

i

is a functional
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of the values of the �eld Q

ab

i��

(�

1

; �

2

) only on the site i. It is obtained

after a functional integral only over the site i quantum �eld n

i�a

:

Z

i

[Q

i

] =

Z

Dn

�a

�(n

2

�a

� 1) exp

"

�

1

2g

Z

d�

X

a

�

@n

�a

@�

�

2

�

Z

d�

1

d�

2

X

ab

Q

ab

i��

(�

1

; �

2

)n

�a

(�

1

)n

�b

(�

2

)

#

: (16.5)

We have dropped the dummy site index on n as this �eld is integrated

over. Notice that functional integral in Z

i

[Q

i

] is closely related to those

considered in Chapter 2 in our study of classical d = 1 spin chains. The

latter models are exactly soluble, and its known correlators can be used

to construct an expansion for Z

i

[Q

i

] in powers of Q

i

for an arbitrary

time-dependent Q

i

. It should be kept in mind that are n decoupled

copies of the classical chain here, and this does lead to interesting and

important structure in the resulting action. After evaluating Z

i

[Q

i

] in

this manner, we take the spatial continuum limit and obtain our spin

glass partition function, which we write schematically in the form

Z

sg

=

Z

DQ

ab

��

(x; �

1

; �

2

) exp (�S

sg

[Q]) : (16.6)

Now the focus of our attention is the �eld Q

ab

��

(x; �

1

; �

2

) which will play

the role of an order parameter for the quantum spin glass. Before turning

our attention to the structure of the action S

sg

[Q], we discuss the physi-

cal interpretation of Q. From the structure of the Hubbard-Stratanovich

transformation it is clear that we have the correspondence

Q

ab

��

(x

i

; �

1

; �

2

) � n

i�a

(�

1

)n

i�b

(�

2

); (16.7)

where the symbol � indicates that correlators of Q are closely related

to the corresponding correlators of the right hand side; for simplicity we

will assume the proportionality constant is unity and replace (16.7) by

an equality. From (16.7) we see that the replica diagonal components

have the mean value

lim

n!0

1

n

X

a





Q

aa

��

(x

i

; �

1

; �

2

)

��

= hn

i�

(�

1

)n

i�

(�

2

)i

= �

��

�

L

(�

1

� �

2

); (16.8)

where the double angular brackets represent averages taken with the

translationally invariant replica action S

sg

in (16.6) (recall that single
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angular brackets represent thermal/quantum averages for a �xed real-

ization of randomness, and overlines represent averages over disorder).

So the mean value of Q contains information on the entire time (or fre-

quency) dependence of the average dynamic local susceptibility, which

we also considered earlier in (15.7); in a sense, it is the time-dependent

�

L

which is the `order parameter functional' for the quantum spin glass.

From (16.1) and (16.8), we see that the Edwards-Anderson order pa-

rameter, q

EA

, can be extracted for the replica diagonal components of

Q by taking the long time limit of (16.8) for real times t. Precisely at

T = 0, this long time limit can also be taken along the imaginary time

axis (for T > 0, �

L

(�) is a periodic function with period 1=T , and so

the long time limit is only de�ned for real times), and we have

q

EA

= lim

�!1

lim

n!0

1

n

X

a

hhQ

aa

(x; �

1

= 0; �

2

= �)ii T = 0: (16.9)

Turning to the replica o�-diagonal components, we see by a standard

application of replica technology [150, 54] that

lim

n!0

1

n(n� 1)

X

a6=b





Q

ab

��

(x

i

; �

1

; �

2

)

��

= hn

i�

(�

1

)ihn

i�

(�

2

)i

= q

EA

; (16.10)

The thermal average in the second step leads to time-independent values,

and so the expectation value of the o�-diagonal components is indepen-

dent of both �

1

and �

2

. In the last step, we have assumed that the

thermal ensemble has the \clustering" property, which demands that

the long-time limit of the correlator in (16.1) is simply the square of the

static magnetic moment on the site, as discussed in Section 1.4; while

it is certainly possible to construct states which do not obey clustering,

imposing a suitable in�nitesimal external �eld on each site will select

the ensemble which does obey (16.10). In (16.10) we have also ignored

subtleties that may arise as a consequence of the intricate phenomenon

known as `replica symmetry breaking'. In the simple mean �eld the-

ory we shall consider below, replica symmetry breaking does not occur;

however, it does appear when additional higher order couplings are in-

cluded [405], but fortunately the structure and analysis of replica sym-

metry breaking in the spin glass phase turn out to be essentially identical

to that discussed elsewhere in the classical case [150, 54]: for these rea-

sons, and also because our interest is primarily in the spin 
uctuations

in the paramagnetic phase, we will not consider this phenomenon here

further.
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Returning to our determination the form of S

sg

[Q], recall that we

noted that the only realistic option was an expansion in powers of Q. It

is worthwhile to ponder a bit on the validity of such an expansion. In the

vicinity of the quantum critical point, we expect q

EA

to become small;

in the spirit of Landau theory, it would then certainly be appropriate

to expand in powers of q

EA

. However for the quantum transition we

need the full time-dependent Q, and not just its long time limit. For

very short j�

1

��

2

j, the local on-site spin correlations will certainly be of

order unity, and so Q will not be small for these times. What we need

to do is to \subtract out" the uninteresting short time part of Q, and

focus on only its long time part for which a Landau-like expansion could

possibly be valid. To do this we consider the following transformation

Q

ab

��

(x; �

1

; �

2

)! Q

ab

��

(x; �

1

; �

2

)� C�

ab

�(�

1

� �

2

) (16.11)

where C is a constant, and the delta function �(�

1

� �

2

) is a schematic

for a function which decays rapidly to zero on a short microscopic time.

The value of C should be adjusted so that the resulting Q contains only

the interesting long time physics: at this point, it is not clear how this

can be done, but we will see shortly that a simple constraint on the

e�ective action allows us to do this quite easily.

Let us consider the expansion of Z

i

[Q

i

] in (16.5) in powers of Q:

we will discuss the nature of the low order terms explicitly, and from

these the principles which restrict the structure of the general term will

emerge.

The �rst term is one linear in Q. It is multiplied by a two-point

correlator of n which is non-zero only if both replica indices are the

same. Further, the subsequent replica-diagonal average will correlate

the two time arguments in Q, and we will get an expression like

Z

d

d

xd�

1

d�

2

Q

aa

��

(x; �

1

; �

2

)�

0

L

(�

1

� �

2

); (16.12)

where the superscript 0 on the local susceptibility reminds us that this

is a bare susceptibility, evaluated without accounting for inter-site corre-

lations. Now an important property of �

0

L

(�) (and all other multi-point

correlations of n) is that it decays rapidly to zero over a time � of order

1=g. In frequency space, we have in the low frequency limit

�

0

L

(!

n

) � (!

2

n

+�

2

0

)

�1

� �

�2

0

� !

2

n

�

�4

0

+ : : : (16.13)

where �

0

� g is the gap of the classical chain model Z

i

[Q = 0] studied

in Chapter 2. If we just take the leading frequency independent term in
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(16.13), we have e�ectively replaced �

0

L

by a constant and set �

1

= �

2

.

This is an important principle, which applies also to higher order terms:

an even number of replica indices can take the same value, but then

the associated time `indices' must also be set equal, as they can be

correlated by quantum 
uctuations of the underlying rotors. Subleading

corrections will involve derivatives of the di�erence in times, and it turns

out to be necessary to retain the additional !

2

n

dependence in (16.13)

only for the linear term in (16.12).

Moving on to higher order terms, we see that the number of allowed

terms proliferates very rapidly. In particular, at n'th order there are

terms which can have between 1 and n independent replica indices

summed over; associated with each independent replica index will be

a time `index' which is integrated over in the action. So the terms have

a variable number of time integrations, and it turns out that most im-

portant are those with a maximum number of independent time (and

replica) indices: this is not di�cult to see from a renormalization group

perspective, as each additional time integration increases the scaling di-

mension of the associated coupling constant.

Proceeding in this manner, we can assert the following results for

S

sg

for the quantum Ising/rotor spin glass; we have used the bene�t of

hindsight and retained only this terms which are necessary to obtain the

leading critical singularities within mean-�eld theory:

S

sg

=

1

w

Z

d

d

x

(

1

�

Z

d�

X

a

�

@

@�

1

@

@�

2

+ r

�

Q

aa

��

(x; �

1

; �

2

)

�

�

�

�

�

1

=�

2

=�

+

1

2

Z

d�

1

d�

2

X

ab

�

rQ

ab

��

(x; �

1

; �

2

)

�

2

�

�

3

Z

d�

1

d�

2

d�

3

X
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Q
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��

(x; �

1

; �

2

)Q

bc

��

(x; �

2

; �

3

)Q

ca

��

(x; �

3

; �
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)

+

1

2

Z

d�

X

a

�

u Q

aa

��

(x; �; �)Q
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(x; �; �)
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��
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��
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�
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1
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X
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Q

aa

��

(x; �

1

; �

1

)Q

bb

��

(x; �

2

; �

2

): (16.14)

There are 7 terms in the action, but only �ve coupling constants: w,

r, �, u and v. Rescaling of space and time co-ordinates has allowed us

to absorb the other two. The �rst two terms are linear in Q and are
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clearly a transcription of the two terms retained explicitly in (16.13). As

the notation suggests, the coupling r will turn out to be relevant tuning

parameter which moves the system between its two phases, and we will

be interested in the phase diagram in the r,T plane. The spatial gradient

term arises from the K

�1

coupling in (16.4) which couples di�erent sites.

This last coupling, and also the expansion of Z

i

[Q] also allow the simple

quadratic term

Z

d

d

xd�

1

d�

2

X

ab

�

Q

ab

��

(x; �

1

; �

2

)

�

2

(16.15)

which we have not included in S

sg

; instead we have chosen the freedom

allowed by the transformation (16.11) to demand that the co-e�cient of

this term be exactly zero. At the moment, this appears just as a conve-

nient choice, but will be seen later to be exactly the criterion required to

focus on only the interesting low frequency behavior of Q. The quadratic

terms proportional to u and v have only a single replica index, and ac-

count for the non-linear, quantum mechanical interactions of the quan-

tum rotors. We have retained only a single cubic term, proportional to

�=w, the one with the maximum possible three time integrations; other

allowed cubic terms are not as important.

Finally, the last term, proportional to 1=w

2

, actually does not appear

in the expansion for S

sg

as we have chosen to explicitly generate it. To

obtain it, we have to allow for on-site disorder in the value of g

i

as can

be schematically seen in a `soft-spin' approach where randomness in g

corresponds to a random mass multiplying �

2

� Q

aa

; averaging over the

random mass will then lead to the last term in (16.14). However, even

in the present model with g �xed, the 1=w

2

term is generated upon any

renormalization with the remaining couplings in S

sg

. In any case, this

1=w

2

term plays no role in the mean �eld theory to follow, and so we

will not discuss it further. It is, however, important to retain it in any

analysis of 
uctuations.

16.1.1 Metallic systems

We consider the extension of the analysis of phase transition of Fermi

liquids in Chapter 12 to the case of a \spin density glass" [370, 453,

437, 371, 416]. For this we generalize (12.1) to a model with a random
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exchange interaction

H

sdg

=

Z

d

d

k

(2�)

d

("

k

� �)c

y

~

k�

c

~

k�

�

X

<ij>

J

ij

^

S

i

�

^

S

j

(16.16)

where

^

S

i

�

1

2

X

��

c

y

i�

~

�̂

��

c

i�

(16.17)

are the electron spin operators on site i. As was the case for the

Ising/rotor models above, we will take the J

ij

to be independent Gaus-

sian random variables. We refer the reader to a review by the au-

thor [428] for the arguments motivating (16.16) as an appropriate low

energy model for a large class of disordered metallic systems; a discus-

sion of the strong Gri�ths-McCoy singularities in such models [343, 51]

may also be found there.

Our analysis of H

sdg

follows closely the steps presented above for the

Ising/rotor models. The �eld S replaces n so now we have

Q

ab

��

(x

i

; �

1

; �

2

) � S

i�a

(�

1

)S

i�b

(�

2

); (16.18)

replacing (16.7). Also the on-site action (@n=@�)

2

=(2g) is replaced by

the �rst kinetic energy term in (16.16). All other steps are the same, and

we obtain an expression identical to (16.4), with the modi�cations just

noted in the de�nition of Z

i

[Q

i

]. The steps in the derivation of S

sg

are

also the same, except the functional integral over the metallic electrons

leads to di�erences in the time-dependence of the terms. In particular,

from the arguments just above (12.10) we see that the expression (16.13)

for the local susceptibility is replaced by

�

L

(!

n

) � A

1

�A

2

j!

n

j+ : : : (16.19)

for some constants A

1

and A

2

. This turns out to be the only signi�cant

change in S

sg

. So the �nal result takes exactly the form (16.14) except

that the single time-derivative term (with co-e�cient 1=(w�)) is replaced

by (after a Fourier transform of (16.19)):

�

1

�w�

Z

d

d

xd�

1

d�

2

X

a

Q

aa

��

(x; �

1

; �

2

)

(�

1

� �

2

)

2

(16.20)

This change in the time derivative term is completely analogous to the

change between (8.2) and (12.10) for the case of regular magnetic order.
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16.2 Mean �eld theory

We will now analyze the action S

sg

in (16.14), and its metallic exten-

sion modi�cation (16.20), in a simple mean �eld theory. An analysis of

the rather complex structure of 
uctuations about this mean �eld has

been attempted [405, 437], but we will not discuss it here as the results

are quite inconclusive. The mean �eld theory is useful in that it gives

a simple picture of the quantum critical point and the �nite tempera-

ture crossovers in its vicinity, should serve as a starting point for more

sophisticated analyses.

Our strategy will be obtain saddle points of S

sg

over variations is a

mean �eld value of the �eld Q(x; �

1

; �

2

). We expect the saddle point

to be invariant under translation in space and time, which implies that

Q is independent of x and a function only of �

1

� �

2

. After Fourier

transforming to Matsubara frequencies by

Q

ab

��

(x; !

n1

; !

n2

) =

Z

1=T

0

d�

1

Z

1=T

0

d�

2

Q
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��

(x; �

1

; �

2

)e

�i(!
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�

1

+!

n2

�

2

)

;

(16.21)

this motivates the following saddle point ansatz:

Q
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; !

n2
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EA
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(16.22)

The �rst is term is independent of the replica indices, and therefore has

been parameterized in terms of the Edwards-Anderson order parameter

by (16.10). The second replica diagonal term is related to the local

susceptibility by (16.8) (we have dropped the overline representing the

disorder average as it is always implied in the present context). Quite

independent of these physical interpretations it is clear that (16.22) is the

most general replica-symmetric ansatz for Q in terms of the parameters

q

EA

and �

L

(!

n

). We insert (16.21) and (16.22) into (16.14) and (16.20)

and obtain for the mean �eld free energy density per replica, F=n:

F

Nn

=

T

w

X

!

n
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M(!

n

) + r

�

�

�

L

(!

n
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3
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3
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(!
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+
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(!
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+

q
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w

�
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�

� � [�

L

(0)]

2

�

; (16.23)
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where

M(!

n

) =

�

!

2

n

for the Ising/rotor models

j!

n

j for the metallic system

: (16.24)

There should also be an additional term in (16.23) coming from the last

term 1=w

2

term in (16.14), but it is proportional to n, and therefore does

not contribute in the replica limit n ! 0. Under these circumstances,

the coupling 1=t appears only as a prefactor in front of the total free

energy, and so the value of w will therefore play no role in the mean

�eld theory. The replica limit n ! 0 has also been taken to simplify

terms arising from the cubic coupling in S

sg

. Also, we are considering

a metallic system with Heisenberg symmetry, so in this case we should

set N = 3.

We now determine the saddle point of (16.23) with respect to varia-

tions in q

EA

and �

L

(!

n

) for every !

n

; the resulting expressions can be

written in the form

�

L

(!

n

) = �

1

�

p

M(!

n

) + �

q

EA

p

� = 0; (16.25)

where � is an intermediate parameter satisfying the equation

� = r + (u+Nv)

 

�q

EA

� T

X

!

n

p

M(!

n

) + �

!

(16.26)

The equations (16.25,16.26) clearly have two distinct types of the so-

lutions. The �rst corresponds to the paramagnetic phase in which the

spin glass order parameter vanishes and so

q

EA

= 0 (16.27)

�
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) = �

1

�

p

M(!

n

) + � (16.28)

� = r � (u+Nv)T

X

!

n

p

M(!

n

) + �; (16.29)

the parameter � > 0 is to be determined from the solution of the non-

linear equation (16.29. The second solution is that of the spin glass

phase in which � = 0, and so

�

L

(!

n

) = �

1

�

p

M(!

n

)

q

EA

= �

r

�(u+Nv)

+

T

�

X

!

n

p

M(!

n

) (16.30)
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It is clear that for su�ciently large r > 0 the paramagnetic solution is

the only physically sensible one, and it has a large � > 0. As we decrease

r at �xed T , the value of � decreases, and we will have phase transition

into the spin glass phase where � �rst vanishes; this will happen at

r = r

c

(T ) which is determined by setting � = 0 in (16.29):

r

c

(T ) � (u+Nv)T

X

!

n

p

M(!

n

) (16.31)

The spin glass phase therefore exists for r < r

c

(T ). It should be clear

from this discussion that r plays the role of the relevant tuning parameter

for the quantum transition, and this notation is consistent with that of

Chapter 8. As in that chapter, it is convenient to shift variables by

de�ning

s � r � r

c

(0); (16.32)

so the quantum critical point is precisely at s = 0, T = 0; at T = 0

the system is paramagnetic for s > 0 and a spin glass for s < 0. For

T > 0 we have phase boundary at s = s

c

(T ) < 0 whose precise shape

will be determined shortly below. These considerations lead to the phase

diagram shown in Fig 16.1.

Let us brie
y discuss the physical properties of the phases found here

in mean �eld theory. In the paramagnetic phase, the local spectral

density of the Ising/rotor models (with M(!

n

) = !

2

n

) is given by

�

00

L

(!) = sgn(!)

p

!

2

��

�

�(j!j �

p

�); (16.33)

so there is an energy gap, and spectral density increases with a square-

root threshold above this gap. Clearly, we can expect that this gap will

be �lled in at T = 0 by Gri�ths-McCoy singularities once 
uctuation

e�ects are included; for T > 0 ordinary thermal 
uctuations will be

adequate to destroy the gap. The mean-�eld spectrum becomes gap-

less precisely at the critical point where � = 0 and the spectral density

vanishes linearly with frequency. The spectral density of the param-

agnetic phase of the metallic systems is quite di�erent; now we have

M(!

n

) = j!

n

j, and this leads to

�

00

L

(!) =

1

p

2�

!

p

�+

p

!

2

+�

2

; (16.34)

now there is no gap, but the spectral density is linear, � !, for frequen-

cies smaller than �, and a square root, �

p

! for larger frequencies. We



442 Quantum spin glasses

T

0
0

METALLIC
SPIN GLASS

s

FERMI LIQUID

NON-FERMI
   LIQUID

A

B

C

+ Griffiths-McCoy singularities

D

Fig. 16.1. Mean �eld phase diagram of a metallic spin glass as a function of

the ground state tuning parameter s and temperature T . The T = 0 state is

a metallic spin glass for s < 0 and a disordered, paramagnetic Fermi liquid

for s > 0. The full line is the only thermodynamic phase transition, and is

at s = s

c

(T ) or T = T

c

(s) given in (16.44). The quantum critical point is

at s = 0, T = 0. The dashed lines denote crossovers between di�erent �nite

T regions of the quantum �eld theory (16.14): the low T regions are A, B

(on the paramagnetic side) and D (on the ordered side), while the high T

region (C) displays `non-Fermi liquid" behavior. The crossovers on either side

of C, and the spin glass phase boundary T

c

(s), all scale as T � jsj

2=3

; the

boundary between A and B obeys T � s. The shaded region has classical

critical 
uctuations described by theories of the type discussed by Refs [54,

150].

will make some further remarks on the physical interpretation of this

spectral density below.

Turning to the spin glass phase, it is clear from (16.30-16.32) that the

Edwards-Anderson order parameter is given by

q

EA

=

1

�(u+Nv)

[s

c

(T )� s] : (16.35)

The spectral density remains pinned at the � = 0 case of (16.33) and

(16.34) in the entire spin glass phase in the present mean �eld theory.

An interesting property of the above solutions is that the low fre-

quency limit of the function �

L

(!

n

) becomes small as one approaches

the phase boundary (for real ! both the real and imaginary parts of �

L

become small), which indicates that expanding in powers of Q was ap-

propriate. This smallness is actually a consequence of the shift (16.11)
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used to eliminate the term (16.15) from the action. If we had instead

included (16.15) in the present mean �eld analysis, we would have found

a very similar solution, but the resulting �

L

would have an additional

frequency-independent contribution to its real part which remained of or-

der unity at the phase boundary. Such a regular frequency-independent

term does not modify the interesting long time correlations or the low

frequency spectral weight, which actually remain as we have found them

here. This is then the promised a posteriori justi�cation for the expan-

sion employed in obtaining S

sg

.

We will discuss the nature of the �nite temperature crossovers within

the paramagnetic phase of the metallic system, as shown in Fig 16.1;

the behavior of the Ising/rotor system is closely related and details may

be found elsewhere [405]. The spectral density is given everywhere by

(16.34) which depends solely on the energy scale �, to be determined

by the solution of (16.29). We will present a complete derivation of the

universal T and s dependence of � in the vicinity of the quantum critical

point T = 0, s = 0; despite the seemingly simple equation (16.29) to

be solved, a great deal of structure emerges, including some non-trivial

crossover functions. We begin by combining (16.29), (16.31) and (16.32)

into

�+ (u+Nv)T

p

� = s� (u+Nv)

0

@

T

X

!

n

6=0

p

j!

n

j+��

Z

d!

2�

p

j!j

1

A

:

(16.36)

For convenience, we have chosen to move the !

n

= 0 term in the fre-

quency summation from the right hand to the left hand side. To leading

order in u+Nv, this equation has the simple solution � = s. To improve

this result it turns out to be adequate to simply set � = s on the right

hand side of (16.36): the minimum value of !

n

in the summation is 2�T

and this always turns out to be much larger than � in the interesting

universal region, as will become clear from the analysis below. This

strategy of separating the !

n

= 0 and !

n

6= 0 terms, and of treating the

!

n

= 0 term with more care, is reminiscent of the approach applied in

Chapter 8 for �nite T crossovers; we will see below that the resulting

crossovers are very similar to those found in Section 8.2.2 for the case

when the clean Ising/rotor model was above its upper critical dimen-

sion. After making the noted approximation, we can further manipulate

(16.36) into

� + (u+Nv)T

p

� = s+ (u+Nv)T

p

s
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: (16.37)

The manipulations above are similar to those discussed below (5.66) and

used extensively in Chapter 8: we always subtract from the summation

over Matsubara frequencies of any function, the integration of precisely

the same function; the di�erence is then convergent in the ultraviolet,

and such a procedure leads naturally to the universal crossover func-

tions [427]. We will now manipulate (16.37) into a form where it is

evident that � is analytic as a function of s at s = 0 for T > 0. This

analyticity is of course closely related to that discussed in Sections 8.2.1

and 8.2.2, and is due to the absence of any thermodynamic singularity

for T > 0, s = 0 (see Fig 16.1). We use the identity

Z
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p

�d�

�

1

�+ a

�

1

�+ b

�
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p

b�

p

a) (16.38)

to rewrite (16.37) as
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; (16.39)

where �

!

is an upper cuto� for the frequency. We evaluate the fre-

quency summation by expressing it in terms of the digamma function

 , and perform all frequency integrals exactly. After some elementary

manipulations (including use of the identity  (s+ 1) =  (s) + 1=s), we

obtain our �nal result for �, in the form of a solvable quadratic equation



16.2 Mean �eld theory 445

for

p

�:

�+(u+Nv)T

p

� = s

 

1�

(u+Nv)�

1=2

!

�

!

+(u+Nv)T

3=2

�

sdg

�

s

T

�

;

(16.40)

where the universal crossover function of the spin density glass �

sdg

(y)

is given by

�

sdg

(y) =

1

�

2

Z

1

0

p

�d�

�

log

�

�

2�

�

�  

�

1 +

�+ y

2�

�

+

� + y

�

�

:

(16.41)

Notice the similarity in the structure of the above results to that of

(8.39) and (12.15): in all cases we have universal crossover functions

for the characteristic energy scale in the vicinity of a quantum criti-

cal point; indeed, for accidental reasons the universal function �

sdg

(y)

is proportional to the universal function L in (12.16) in d = 3. Also

note that the crossovers in (16.40) depend upon the magnitude of the

microscopic couplings u, v which represent the quantum mechanical in-

teractions between the rotors or Ising spins. This is also a feature of

(8.39) and (12.15), and by analogy we may conclude that the couplings

u and v are formally irrelevant at the quantum critical point, but are

nevertheless crucial in constructing the crossovers at nonzero tempera-

tures, i.e., they are dangerously irrelevant: this expectation is veri�ed

by an explicit renormalization group analysis of S

sg

[437] which we shall

not discuss here.

The above expression for �

sdg

(y) is clearly analytic for all y � 0,

including y = 0, as we hoped to achieve. As was the case for (8.39,8.40),

we can use the above result for y < 0 until we hit the �rst singularity at

y = �2�, which is associated with singularity of the digamma function

 (s) at s = 0. However, this singularity is of no physical consequence, as

it occurs within the spin glass phase (Fig 16.1), where the above solution

is not valid; as shown below, the transition to the spin glass phase occurs

for y � �(u + Nv)T

1=2

which is well above �2�. For our subsequent

analysis, it is useful to have the following limiting results, which follow

from (16.41):

�

sdg

(y) =

�

p

1=2��(3=2) +O(y) y ! 0

(2=3�)y

3=2

+ y

1=2

+ (�=6)y

�1=2

+O(y

�3=2

) y !1

(16.42)

The expression (16.34), combined with the results (16.40) and (16.41)

completely specify the s and T dependence of the dynamic susceptibility
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in the paramagnetic phase, and allowed us to obtain the phase diagram

shown in Fig 16.1, whose details we will now discuss. There is a quantum

critical point at s = 0, T = 0, and the characteristic energy scale �

vanishes linearly upon approach to this point at T = 0

� � s for s > 0, T = 0: (16.43)

There is a line of �nite temperature phase transitions, denoted by the full

line in Fig 16.1, which separates the spin glass and paramagnetic phases;

this line is determined by the condition � = 0, and is at r = s

c

(T ) (or

T = T

c

(s)), with

s

c

(T ) = �(u+Nv)�(0)T

3=2

or T

c

(s) = [�s=(u+Nv)�(0)]

2=3

(16.44)

The crossovers within the paramagnetic phase are similar to those found

in Section 8.2.2 and 12.2, and we will discuss the characteristics of the

di�erent limiting regimes

(A,B) Low T paramagnetic Fermi liquid, T < [s=(u+Nv)]

2=3

This is the \Fermi liquid" region, where the leading contribution to the

characteristic energy scale � is its T = 0 value �(T ) � �(0) = s. The

leading temperature dependent correction to � is however di�erent in

two subregions. In the lowest T region A, T < s, we have a Fermi

liquid-like T

2

power law

�(T )��(0) =

(u+Nv)�T

2

6

p

s

region Ia: (16.45)

At higher temperatures, in region B, s < T < [s=(u+Nv)]

2=3

, we have

an anomalous temperature dependence

�(T )��(0) = (u+Nv)�(0)T

3=2

region Ib and II: (16.46)

It is also interesting to consider the properties of regions A, B as a

function of observation frequency, !, as sketched in Fig. 16.2. At large

frequencies, ! � s, the local dynamic susceptibility behaves like �

00

L

�

sgn(!)

p

j!j, which is the spectrum of critical 
uctuations; at the T = 0,

s = 0 critical point, this spectrum is present at all frequencies. At

low frequencies, ! � s, there is a crossover (Fig 16.2) to the charac-

teristic Fermi liquid spectrum of local spin 
uctuations �

00

L

� !=

p

s.

Upon consideration of 
uctuations beyond mean-�eld, one �nds the ap-

pearance of Gri�ths-McCoy singularities in this region, as discussed in

related contexts in Chapter 15; these are quite important for experi-

mental comparisons at low temperatures, and are further discussed in

Refs. [428, 343, 51, 126, 127, 288, 290, 344, 345, 77, 22].
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High T

Low T Fermi liquid

ω
0 s

CRITICAL
FERMI
LIQUID

ω
0

QUANTUM
RELAXATIONAL CRITICAL

(u+Nv) T3/2

Fig. 16.2. Crossovers as a function of frequency, !, in the regions of Fig 16.1 of

the metallic spin glass. The low T Fermi liquid region is on the paramagnetic

side (s > 0).

(C) High T region, T > [jsj=(u+Nv)]

2=3

Here temperature dependent contributions to � dominate over those

due to the deviation of the coupling d from its critical point, d = 0.

Therefore thermal e�ects are dominant, and the system behaves as if its

microscopic couplings are at those of the critical ground state. The T

dependence in (16.46) continues to hold, as we have already noted, with

the leading contribution being

� � (u+Nv)�(0)T

3=2

: (16.47)

Notice that the characteristic energy scale now does not scale simply as

� T , as it did for the high T region of the models in Part 2 with d < 3.

Instead all T -dependent corrections arise from the irrelevant coupling u,

which leads to the anomalous power-law in (16.47). As in (A,B), it is

useful to consider properties of this region as a function of ! (Fig 16.2).

For large ! (! � (u+Nv)T

3=2

) we again have the critical behavior �

00

L

�

sgn(!)

p

j!j; this critical behavior is present at large enough ! in all the

regions of the phase diagram. At small ! (! � (u+Nv)T

3=2

), thermal


uctuations quench the critical 
uctuations, and we have relaxational

behavior with �

00

L

� !=(u+Nv)

1=2

T

3=4

.

(D) Low T region above spin glass, T < [�s=(u+Nv)]

2=3

, s < 0

E�ects due to the formation of a static moment are now paramount. As

one approaches the spin glass boundary (16.44) from above, the system

enters a region of purely classical thermal 
uctuations, jT � T

c

(s)j �
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(u+Nv)

2=3

T

4=3

c

(s) (shown shaded in Fig 16.1) where

� =

�

s� s

c

(T )

T (u+Nv)

�

2

(16.48)

Notice that � depends on the square of the distance from the �nite

T classical phase transition line, in contrast to its linear dependence

at T = 0 in (16.43). It turns out that (16.48) when inserted into the

static correlation functions reproduces precisely the critical singularities

of the theory of classical spin glasses [405]. Indeed, the reader is invited

to show by the methods of Part 2 that the 
uctuations in the shaded

region of Fig 16.1 are described by precisely the classical critical theories

of Refs [54, 150].

The above results for the local dynamic susceptibility can be extended

to a number of other experimentally important observables: as the ba-

sic methods are similar to those already developed here, we refer the

interested reader to the literature [453, 437].

16.3 Applications and extensions

Much of the recent theoretical interest in quantum spin glasses has been

driven by the experiments of the group of T. Rosenbaum and G. Aep-

pli [530, 531] on the insulating, dipolar Ising spin glass LiHo

x

Y

1�x

F

4

[530, 531] in a transverse �eld. These clearly show a crossover between

thermal and quantum 
uctuation dominated regimes, but the nature of

the quantum critical point remains unclear. The vicinity of the spin glass

phase is dominated by real time glassy dynamics which drives the sys-

tem out of equilibrium. On the theoretical side, we have already noted

the work on the quantum Ising spin glass in in�nite range models. Mod-

els with �nite range interactions have been studied in imaginary time

computer simulations [196, 409] which yield information on thermody-

namic properties and critical exponents. However, it is clear that an

understanding of the experiments will require a theory of the real time

dynamics of quantum spin glasses: we have discussed the real time,

nonzero temperature, physics near non-random quantum critical points

in Part 2, but there are no corresponding results for the random case.

Recent steps towards understanding the real time dynamics include the

droplet model picture of Thill and Huse [489] and the in�nite-range

model studies of Rozenberg and Grempel [417].

A signi�cant application of the concepts discussed here on metallic

spin glasses has been in the `heavy fermion' series of compounds. The
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Gri�ths-McCoy singularities of the Fermi liquid phase have been the

subject of much attention; discussions along with comparisons with ex-

periments may be found in Refs [126, 127, 344, 345, 428, 77, 22]. The

anomalous power laws at high T in the vicinity of the quantum crit-

ical point [453, 437] have also been examined in recent experimental

studies [477].

We have not commented in this chapter on insulating quantum spin

glass of Heisenberg spins: such models would generalize those of Chap-

ter 13 to the case of random exchange interactions. These turn out to

be considerably more complicated: some work on in�nite range models

may be found in Refs [61, 441, 278, 452, 188].

As we noted earlier, 
uctuation corrections to the mean �eld theory

presented in this chapter have been considered in the literature [405,

437, 453, 452]. The �rst two [405, 437] focused on spatial 
uctuations

in the spin-glass order parameter, while the last two [453, 452] consid-

ered the quantum 
uctuations in the on-site `quantum impurity' model.

These latter works argued that while the mean-�eld theory of this chap-

ter is an adequate starting point for metallic electronic systems with

Ising symmetry, those with full Heisenberg symmetry appear to be con-

trolled by the critical quantum paramagnetic state found in Ref [441]

in the study of insulating Heisenberg spin models. The critical state of

Ref [441] also appears in a most interesting recent analysis by Parcollet

and Georges [375] of a doped Mott insulator with random exchange in-

teractions: the temperature and frequency crossovers found are closely

related to those observed in the high temperature superconductors.
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activated dynamic scaling, 415, 424, 429

amplitude 
uctuations, 160, 178, 218,

223

analytic continuation, 45

angular 
uctuations, 161, 179, 219

angular momentum current, 226, 236

angular momentum density, 225

anomalous dimension, see scaling

dimension, anomalous

antiferromagnet

canted, 9, 359

collinear, 335

double layer, 107

Heisenberg, 9, 334

non-collinear, 348

asymptotic expansion, 333

asymptotic freedom, 47

average over initial conditions, 83, 157,

215

background �eld method, 138

bare coupling, 150

Berry phase, 46, 257, 271, 321, 324, 329,

347, 351, 365

Bethe ansatz, 154, 170

Bloch precession, 111, 226

Bogoliubov transformation, 63

Boltzmann's constant, 14

branch cut, 94, 354

canted order, see

antiferromagnet,canted

chemical potential, 258

chiral spin liquid, 354

classical rotors, 156

clustering, 434

coherent state, 265, 271

canonical bosons, 271

Heisenberg spins, 322

path integral, 321

collinear order, see antiferromagnet,

collinear

colored particles, 143

conductance 
uctuations, 252

conductivity, 227

con�guration space, 156

conformal mapping, 72, 93, 283, 301,

379

continuity equation, 226

continuum Fermi �eld, 65

coplanar order, 348

correlation length, 5

couplings

dangerously irrelevant, 213, 254, 296,

316, 445

decimate, 419

irrelevant, 71

relevant, 68

critical continuum, 95, 186

critical exponent, 5

continuously varying, 383

correlation length, 5, 39, 68, 202, 424

dynamic, 5, 39, 52, 67, 117, 277, 313,

384, 409

e�ective classical, 83

�, 126, 183

magnetization, 78, 120

non-universal, 404

percolation, 411

dangerously irrelevant couplings, see

couplings, dangerously irrelevant

dangerously irrelevant quantum


uctuations, 418

de Broglie wavelength, 79, 88, 140, 284,

295

deterministic classical dynamics, 83,

157, 215

diamagnetic term, 231

di�usivity, 137, 146, 161, 227

466
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dimension

engineering, see engineering

dimension

scaling, see scaling dimension

dimensional regularization, 150, 201

dipolar interactions, 8, 220

dissipative quantum mechanics, 220

domain wall, 60

double layer antiferromagnet, see

antiferromagnet, double layer

double time path integral, 80, 89, 142

D

s

, 137, 227

Dyson-Maleev, 329

Edwards-Anderson order parameter, 431

e�ective action for statics, 149, 203,

292, 313

Einstein relation, 228

energy gap, 4

engineering dimension, 69

� expansion, 194

failure at low frequencies, 209

�

�

time dimensions, 408

Fermi liquid, 305, 446

Fermi surface, 305, 306

gap on portion, 310

Fermi's Golden Rule, 241

ferromagnet

quantized, 327, 357

Stoner, 318, 362

unquantized, 360

gapless mode, 361

�eld theory

classical, 43

collinear antiferromagnet, 337

dilute Bose gas, 270

dilute Fermi gas, 272

disordered Hertz, 409

disordered soft spin, 406

Fermi liquid, 281

Hertz, 312

non-collinear antiferromagnet, 351

quantized ferromagnet, 328

quantum, xii, 40

quantum non-linear sigma model, 43,

111, 337

quantum spin glass, 436

renormalization group, 150, 200

S

H

, 312

S

Hd

, 409

sine Gordon, 382

S

n

, 43, 111

soft spin, 42, 195, 225

S

�d

, 406

S

�

, 42, 195

S

SG

, 382

S

sg

, 436

S

TL

, 376

S

z

, 351

Tomonaga-Luttinger liquid, 376

�xed point coupling, 201


ow equation, 139, 201, 329, 384, 385

exact, 287

for probability distribution, 421


uctuation-dissipation theorem, 54

classical limit, 84, 156


ux phase, 354

G, 216

Ginzburg parameter, 216

glassy dynamics, 448

Grassman path integral, 65, 272

Gri�ths-McCoy singularities, 403, 427,

441, 448

Hamilton-Jacobi equation, 157, 215

Hamiltonian

boson Hubbard, 258

classical wave, 156, 215

disordered quantum Ising, 400

disordered quantum rotor, 400

double layer, 107

Fermi liquid, 370

bosonic form, 374

H, 226

H

12

, 367

bosonic form, 380

H

B

, 258

H

c

, 156, 215

H

d

, 107

Heisenberg spin, 320

H

F

, 65

H

FL

, 370

H

I

, 10, 51, 64

H

Id

, 400

H

R

, 16, 105, 356, 396

H

Rd

, 400

H

S

, 320

H

XX

, 273

O(2) quantum rotor chain, 396

quantum Ising, 10

quantum Ising chain, 51, 64

quantum rotor, 16, 105, 356

single O(2) quantum rotor, 30, 31

single O(3) quantum rotor, 34

single quantum Ising spin, 24

soft spin, 226

spin chain, 367

Tomonaga-Luttinger liquid, 375

XX model, 273

Harris criterion, 401

headless vector, 350

hedgehog, 345



468 Index

Heisenberg spin, 107

high T

continuum, 77, 130, 147, 179, 209,

213, 302

lattice, 77, 284

Hohenberg-Mermin-Wagner theorem,

111

Hubbard-Stratanovich transformation,

200, 265, 309, 432, 433

hyperscaling, 47

in processes, 241

incompressibility, 263

instanton gas, 347

inversion identity, 33

irrelevant perturbation, see couplings,

irrelevant

Ising spin, 8, 11

Jordan-Wigner transformation, 61, 274

Josephson length, 122

kink, 60

Kosterlitz-Thouless transition, 395

Kramers-Kronig transform, 54

Kubo formula, 230

ladder diagrams, 286

Lagrange multiplier, 112

Landauer transport, 252

level crossing, 3

Lie algebra, 226

structure constants, 226

Lorentzian, 98

squared, 98, 103

low T

magnetically ordered, 78, 130, 166

quantum paramagnet, 85, 129, 140,

179, 207

magnetization density, 328

magnetization plateau, 360

Majorana fermions, 66

maximally incoherent, 46

momentum cuto�, 5, 66, 112, 138, 215

momentum density, 236

Mott insulator, 263

multiple spin exchange, 364

N�eel order, 335, 341, 391

nematic liquid crystal, 350

N !1 theory, 112

failure of 1=N expansion at low

frequencies, 191

magnetically ordered, 119

1=N corrections, 180

nesting, 307

non-Abelian gauge transformation, 230

non-collinear order, see

antiferromagnet, non-collinear

non-linear sigma model, see �eld theory,

quantum non-linear sigma model

normal order, 370

out processes, 241

pair creation, 242

paramagnetic term, 231

particle physics, 47

particle-hole excitations, 371

particle-hole symmetry, 260

Pauli matrices, 11

percolation theory, 410

phase coherence time, xii, 45, 77, 78, 82,

90, 100, 130, 145, 159, 167, 173,

179, 187, 189, 234, 302, 303

phase space, 156

phase transition

classical, 7, 38, 132, 210

quantum, 3, 7

failure of Landau theory in low

dimensions, 343, 396

second order, 3

Planck's constant, 14

Poisson brackets, 157, 214

pre-existing carriers, 251

pseudo-gap, 193, 221, 222, 311

QC mapping, 44

quantized density, 265, 270

quantum critical, 76, 213

quantum dimer model, 347

quantum disordered, 46, 78, 85

quantum inverse scattering, 302

quantum paramagnet, 8, 46, 55, 115

quantum relaxational dynamics, 92, 96

quantum rotor, 14

commutation relations, 15

moment of inertia, 15

quasi-classical

particles, 79, 88, 136, 140, 164, 188,

224, 246, 279, 299

waves, 136, 148, 157, 164, 167, 178,

214, 224

quasi-long range order, 275, 289

quasiparticle peak, see quasiparticle

pole

quasiparticle pole, 59, 87, 107, 116, 120

quasiparticle residue, 87, 116, 126, 146,

184

radio frequency, 252

relevant perturbation, see couplings,

relevant
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renormalization group invariant, 153,

173

renormalization group transformation,

see scaling transformation

renormalization scale �, 150, 200

renormalized classical, 78

renormalized coupling, 150

replica method, 407

ring exchange, 364

rotating reference frame, 111

S matrix, 56, 141

superuniversal, 57, 141

scaling dimension, 52, 68

anomalous, 69, 118

chemical potential, 277

conductivity, 229

di�usivity, 229

dilute bosons, 285

energy gap, 68

�eld, 68

�eld coupling to conserved charge,

119

free energy, 69

free fermions, 277

Luttinger liquid, 384

magnetic �eld, 119

N�eel order, 395

order parameter, 69, 118

quasiparticle residue, 118

space, 68

spin sti�ness, 121

spin-Peierls order, 395

temperature, 68

time, 68

uniform susceptibility, 119

scaling function

activated dynamic, 415

analyticity for T > 0, 73, 126, 206,

293, 315, 445

�(k; !), 125

�(k; !), d = 2, 166

�

u

, 126, 228

conductivity, 229

d = 2 quantum rotor, quasi-classical

wave, 167, 178

di�usivity, 137

dilute Bose gas, static couplings, 293

dilute Fermi gas, 278

F

I

, 73

F

�

, 127

free energy, 23, 29

F

X

, 297

G, 205, 411

e

G

d

, 211

G

I

, 73

G

X

, 297

incoherent transport, 243

Ising chain equal-time, 73

Ising chain, high T , 96

Ising chain, quantum critical, 96

Ising chain, quasi-classical particle,

83, 90

K, 293

L, 315

m, large N , 127

magnetization, 416

percolation, 411

�

c

, 167

�

D

s

, 137

�

F

, 23, 29

�

F

B

, 289

�

F

F

, 278

�

G

B

, 289

	

G

F

, 278

�

I

, 70

�

M

, 416, 427

�

n

, 29

�

�

, 189

�

�

, 125, 166

�

R

, 83

�

�

, 23, 26

�

�I

, 244, 249

�

Sc

, 85, 159, 178, 216

�

sdg

, 445

�

��

, 229

�

u�

, 126, 228

P, 422

	, 243, 249

	

D

, 199

quantum Ising chain, 70

quantum rotor chain, quasi-classical

particles, 145

quantum rotor chain, quasi-classical

waves, 159

random Ising chain, 422

reduced, 52, 82, 132, 210, 280

R, 422

soft spin, �(k), 204

soft spin, quasi-classical waves, 216

soft spin, static couplings, 205

spin density glass, 445

spin density wave, static couplings,

315

tricritical, 199

universal, 23

XX chain equal-time, 297

scaling limit, 21, 40

scaling theory, 25

scaling transformation, 52, 64, 66, 137,

201, 287

decimation, 419

exact, 287

scattering length, 291



470 Index

sine-Gordon model, 382


ow equation, 384, 385

refermionization, 390

soliton, 388

spinon, 389

single particle states, 55

Skyrmion number, 345

slab geometry, 43, 47

soft spin, see �eld theory, soft spin

spectrum

gapless, 4, 13, 109, 250, 311

gapped, 4, 13

spin density glass, 430

spin density wave, 8, 305, 307

spin glass, 447

spin sti�ness, 104, 121, 329

spin wave, 104, 110, 328

classical, 148, 167

spin waves

classical, 214

spin-Peierls order, 339, 344, 386

spinons, 353

con�ned, 354

decon�ned, 353

spontaneous magnetization, 13, 78, 126,

185

spontaneous symmetry breaking, 12

Stoner ferromagnet, see ferromagnet,

Stoner

string, 326

structure factor

dynamic, 53, 106

equal time, 53

sum rule, 53

super
uid density, 260

supersolid, 269

susceptibility

�(k), 53

�(k; !

n

), 53

�

u

, 106

�

u

(k; !

n

), 137

dynamic, 53, 106

static, 53

uniform, 106

symmetry breaking, 12

T matrix, 188, 286, 331

tagged particle autocorrelation, 143

thermal paramagnet, 8

� term, 338

three particle continuum, 59, 95, 183

threshold, 58

Toeplitz determinant, 75

Tomonaga-Luttinger liquid, 300, 339,

385

boundary conditions, 375

commutation relations, 375

Fermi operator, 377

Hamiltonian, 375

mode expansion, 375

topological term, 338

trajectories, 144

transfer matrix, 19, 24, 37

transport

coherent, 250, 253

collision dominated, 240

collisionless, 235

current, 227

� expansion, 241

high T , 234, 243

incoherent, 251

universal, 251

large N expansion, 247

low T quantum paramagnet, 235, 246

quantum Boltzmann equation, 242

transverse �eld, 8, 11

tricritical crossover, 199, 293

tunneling event, 339

two particle continuum, 58

two particle states, 56

two-level system, 220

umklapp, 381

uncertainty principle, 7

universal scaling function, see scaling

function, universal

universality, 5, 22, 41

upper-critical dimension, 112, 115

valence bond, 347

vortices

double, 382

single, 397

Z

2

symmetry, 12

Z

2

gauge transformation, 351

Z

2

vortex, 352

zero point motion, 110


